
ID 543: Day 4
Introduction to R

1 / 84

Homework review

2 / 84

Today’s goals
Make a simple frequency tables

Make a more complex “Table 1”

Run regressions in R and show the results in a table

Introduce the framework of ggplot2 and make some
simple figures

3 / 84

Tables
We saw that we could compute summary statistics using
summarize():

nlsy |> 1
 group_by(sex_cat) |> 2
 summarize(prop_glasses = mean(glasses),3
 mean_age_bir = mean(age_bir),4
 n_vg_eye = sum(eyesight_cat == "Very Good"),5
 prop_vg_eye = mean(eyesight_cat == "Very Good"),6
 n_g_eye = sum(eyesight_cat == "Good"),7
 prop_g_eye = mean(eyesight_cat == "Good")8
)9

A tibble: 2 × 7
 sex_cat prop_glasses mean_age_bir n_vg_eye prop_vg_eye n_g_eye prop_g_eye
 <fct> <dbl> <dbl> <int> <dbl> <int> <dbl>
1 Male 0.441 25.1 162 0.323 85 0.170
2 Female 0.572 22.2 223 0.317 164 0.233

4 / 84

Easier way to make frequency tables
The {janitor} package has nice functionality to create
tables:

Just like many of our other functions, it takes a dataset as its first argument so
can pipe

install.packages("janitor")1
library(janitor)2
tabyl(nlsy, sex_cat)3

 sex_cat n percent
 Male 501 0.4157676
 Female 704 0.5842324

Tip

5 / 84

Cross-tabulations with tabyl()
It’s easy to make a 2 x 2 (or n x m) table with tabyl()

tabyl(nlsy, sex_cat, eyesight_cat)1

 sex_cat Excellent Very Good Good Fair Poor
 Male 228 162 85 21 5
 Female 246 223 164 57 14

6 / 84

tabyl()
We might want to see the percentages instead of counts

By default, adorn_percentages() will give you row percentages (sums to 100%
across the row)

nlsy |> 1
 tabyl(sex_cat, glasses_cat) |> 2
 adorn_percentages() |> 3
 adorn_pct_formatting()4

 sex_cat Doesn't wear glasses Wears glasses/contacts
 Male 55.9% 44.1%
 Female 42.8% 57.2%

Tip

7 / 84

Other percentages
nlsy |>1
 tabyl(sex_cat, glasses_cat) |> 2
 adorn_percentages("col") |> 3
 adorn_pct_formatting()4

 sex_cat Doesn't wear glasses Wears glasses/contacts
 Male 48.2% 35.4%
 Female 51.8% 64.6%

nlsy |>1
 tabyl(sex_cat, glasses_cat) |> 2
 adorn_percentages("all") |> 3
 adorn_pct_formatting()4

 sex_cat Doesn't wear glasses Wears glasses/contacts
 Male 23.2% 18.3%
 Female 25.0% 33.4%

8 / 84

tabyl()
These are just dataframes, so we can save as csv, etc.

If you don’t have a “results” folder in your project, that code won’t work until you
make one!

two_by_two <- nlsy |>1
 tabyl(sex_cat, glasses_cat)2

3
write_csv(two_by_two, 4
 here::here("results", "sex-eyesight-table.csv"))5

Warning

9 / 84

We can easily do a chi-squared test

There are a lot of other helpful functions in the janitor package. My favorite is
clean_names(). Check out for more!

tabyl(nlsy, sex_cat, eyesight_cat) |> 1
 chisq.test()2

 Pearson's Chi-squared test

data: tabyl(nlsy, sex_cat, eyesight_cat)
X-squared = 22.738, df = 4, p-value = 0.0001428

Tip

the documentation

10 / 84

https://sfirke.github.io/janitor/

Exercise

11 / 84

Making more complex tables
There are lots of packages for making tables in R

One of my favorites is {gtsummary}

install.packages("gtsummary")1
library(gtsummary)2

12 / 84

gtsummary::tbl_summary()
Characteristic Male, N = 501

1
Female, N = 704

1

race_eth_cat

 Hispanic 81 (16%) 130 (18%)

 Black 138 (28%) 169 (24%)

 Non-Black, Non-
Hispanic 282 (56%) 405 (58%)

eyesight_cat

 Excellent 228 (46%) 246 (35%)

 Very Good 162 (32%) 223 (32%)

 Good 85 (17%) 164 (23%)

 Fair 21 (4.2%) 57 (8.1%)

 Poor 5 (1.0%) 14 (2.0%)

glasses 221 (44%) 403 (57%)

age_bir 24.0 (21.0, 29.0) 21.0 (18.0, 26.0)

1 n (%); Median (IQR)

tbl_summary(1
 nlsy,2
 by = sex_cat,3
 include = c(race_eth_cat,4
 eyesight_cat, 5
 glasses, 6
 age_bir))7

13 / 84

Characteristic Male, N = 501
1

Female, N = 704
1

Race/ethnicity

 Hispanic 81 (16%) 130 (18%)

 Black 138 (28%) 169 (24%)

 Non-Black, Non-
Hispanic 282 (56%) 405 (58%)

Eyesight

 Excellent 228 (46%) 246 (35%)

 Very Good 162 (32%) 223 (32%)

 Good 85 (17%) 164 (23%)

 Fair 21 (4.2%) 57 (8.1%)

 Poor 5 (1.0%) 14 (2.0%)

Wears glasses 221 (44%) 403 (57%)

Age at first birth 24.0 (21.0, 29.0) 21.0 (18.0, 26.0)
1
 n (%); Median (IQR)

tbl_summary(1
 nlsy,2
 by = sex_cat,3
 include = c(race_eth_cat, eyesight_cat, 4
 glasses, age_bir),5
 label = list(6
 race_eth_cat ~ "Race/ethnicity",7
 eyesight_cat ~ "Eyesight",8
 glasses ~ "Wears glasses",9
 age_bir ~ "Age at first birth"10
))11

14 / 84

Variable Total
Male, N =

501
Female, N
= 704 P

Race/ethnicity 0.3

 Hispanic 211 (18%) 81 (16%) 130 (18%)

 Black 307 (25%) 138 (28%) 169 (24%)

 Non-Black,
Non-Hispanic 687 (57%) 282 (56%) 405 (58%)

Eyesight <0.001

 Excellent 474 (39%) 228 (46%) 246 (35%)

 Very Good 385 (32%) 162 (32%) 223 (32%)

 Good 249 (21%) 85 (17%) 164 (23%)

 Fair 78 (6.5%) 21 (4.2%) 57 (8.1%)

 Poor 19 (1.6%) 5 (1.0%) 14 (2.0%)

Wears glasses 624 (52%) 221 (44%) 403 (57%) <0.001

Age at first
birth

22.0 (19.0,
27.0)

24.0 (21.0,
29.0)

21.0 (18.0,
26.0) <0.001

tbl_summary(1
 nlsy,2
 by = sex_cat,3
 include = c(race_eth_cat, eyesight_cat, 4
 glasses, age_bir),5
 label = list(6
 race_eth_cat ~ "Race/ethnicity",7
 eyesight_cat ~ "Eyesight",8
 glasses ~ "Wears glasses",9
 age_bir ~ "Age at first birth"10
)) |> 11
 add_p(test = list(12
 all_continuous() ~ "t.test", 13
 all_categorical() ~ "chisq.test")) |>14
 add_overall(col_label = "**Total**") |> 15
 bold_labels() |> 16
 modify_footnote(update = everything() ~ NA17
 modify_header(label = "**Variable**", 18
 p.value = "**P**")19

15 / 84

tbl_summary()
Incredibly customizeable

Really helpful with Table 1

I often just view in the web browser and copy and paste
into a Word document

Can also be used within quarto/R Markdown

If output is Word, I use as_flex_table() to output using
the flextable package

Make even more customizeable with the gt package
with as_gt()

16 / 84

Exercise

17 / 84

Regression
Regressions take a formula: y ~ x1 + x2 + x3

Include interaction terms between x1 and x2 with y ~
x1*x2 + x3

Main effects of x1 and x2 will be included too

Indicator (“dummy”) variables will automatically be
created for factors

The first level will be the reference level

If you want to include a squared term (for example), you
can make the squared variable first, or wrap in I(): y ~
x1 + I(x1^2)

18 / 84

Regression
To fit a linear regression (by ordinary least squares), use
the lm() function

To fit a generalized linear model (e.g., logistic regression,
Poisson regression) use glm() and specify the family =
argument

family = gaussian() is the default: another way of
fitting a linear regresion

family = binomial() gives you logistic regression

family = poisson() is Poisson regression

We tell R what dataset to pull the variables from with data
=

19 / 84

Regression
linear_model <- lm(income ~ sex_cat*age_bir + race_eth_cat, 1
 data = nlsy)2

logistic_model <- glm(glasses ~ eyesight_cat + sex_cat + income, 1
 data = nlsy, family = binomial())2

20 / 84

Regression
coef(linear_model)1

 (Intercept) sex_catFemale
 1029.3339 -4681.2484
 age_bir race_eth_catBlack
 482.4650 -299.6490
race_eth_catNon-Black, Non-Hispanic sex_catFemale:age_bir
 6418.4568 161.5008

confint(linear_model)1

 2.5 % 97.5 %
(Intercept) -3746.58543 5805.2531
sex_catFemale -10553.32090 1190.8242
age_bir 303.50836 661.4217
race_eth_catBlack -2448.39108 1849.0932
race_eth_catNon-Black, Non-Hispanic 4500.91244 8336.0012
sex_catFemale:age_bir -77.30931 400.3109

21 / 84

Regression
exp(coef(logistic_model))1

 (Intercept) eyesight_catVery Good eyesight_catGood
 0.6338301 0.9172091 0.8608297
 eyesight_catFair eyesight_catPoor sex_catFemale
 0.5798278 1.1624355 1.8362460
 income
 1.0000174

summary(logistic_model)1

Call:
glm(formula = glasses ~ eyesight_cat + sex_cat + income, family = binomial(),
 data = nlsy)

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.560e-01 1.383e-01 -3.298 0.000975 ***
eyesight_catVery Good -8.642e-02 1.400e-01 -0.617 0.537031
eyesight_catGood -1.499e-01 1.604e-01 -0.934 0.350267
eyesight_catFair -5.450e-01 2.535e-01 -2.150 0.031585 *
eyesight_catPoor 1.505e-01 4.786e-01 0.315 0.753121
sex_catFemale 6.077e-01 1.210e-01 5.021 5.14e-07 ***
income 1.745e-05 4.613e-06 3.782 0.000155 ***

22 / 84

Helpful regression packages
{broom} helps “tidy” regression results

library(broom)1
tidy(linear_model)2

A tibble: 6 × 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 1029. 2434. 0.423 6.72e- 1
2 sex_catFemale -4681. 2993. -1.56 1.18e- 1
3 age_bir 482. 91.2 5.29 1.46e- 7
4 race_eth_catBlack -300. 1095. -0.274 7.84e- 1
5 race_eth_catNon-Black, Non-Hispanic 6418. 977. 6.57 7.63e-11
6 sex_catFemale:age_bir 162. 122. 1.33 1.85e- 1

23 / 84

broom::tidy()
tidy(logistic_model, conf.int = TRUE, exponentiate = TRUE)1

A tibble: 7 × 7
 term estimate std.error statistic p.value conf.low conf.high
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 0.634 0.138 -3.30 9.75e-4 0.483 0.830
2 eyesight_catVery Good 0.917 0.140 -0.617 5.37e-1 0.697 1.21
3 eyesight_catGood 0.861 0.160 -0.934 3.50e-1 0.628 1.18
4 eyesight_catFair 0.580 0.254 -2.15 3.16e-2 0.350 0.949
5 eyesight_catPoor 1.16 0.479 0.315 7.53e-1 0.458 3.08
6 sex_catFemale 1.84 0.121 5.02 5.14e-7 1.45 2.33
7 income 1.00 0.00000461 3.78 1.55e-4 1.00 1.00

24 / 84

broom::tidy() can also help other statistics
tabyl(nlsy, sex_cat, eyesight_cat) |> 1
 chisq.test() |> 2
 tidy()3

A tibble: 1 × 4
 statistic p.value parameter method
 <dbl> <dbl> <int> <chr>
1 22.7 0.000143 4 Pearson's Chi-squared test

t.test(income ~ sex_cat, data = nlsy) |> 1
 tidy()2

A tibble: 1 × 10
 estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2397. 16690. 14292. 3.00 0.00273 963. 831. 3963.
ℹ 2 more variables: method <chr>, alternative <chr>

25 / 84

gtsummary::tbl_regression()
Characteristic Beta 95% CI

1
p-value

(Intercept) 1,029 -3,747, 5,805 0.7

Sex

 Male — —

 Female -4,681 -10,553, 1,191 0.12

Age at first birth 482 304, 661 <0.001

Race/ethnicity

 Hispanic — —

 Black -300 -2,448, 1,849 0.8

 Non-Black,
Non-Hispanic 6,418 4,501, 8,336 <0.001

Sex/age
interaction

 Female * Age
at first birth 162 -77, 400 0.2

1 CI = Confidence Interval

tbl_regression(1
 linear_model, 2
 intercept = TRUE,3
 label = list(4
 sex_cat ~ "Sex",5
 race_eth_cat ~ "Race/ethnicity",6
 age_bir ~ "Age at first birth",7
 `sex_cat:age_bir` ~ "Sex/age interaction8
))9

26 / 84

gtsummary::tbl_regression()
Characteristic OR

1
95% CI

1
p-value

Eyesight

 Excellent — —

 Very Good 0.92 0.70, 1.21 0.5

 Good 0.86 0.63, 1.18 0.4

 Fair 0.58 0.35, 0.95 0.032

 Poor 1.16 0.46, 3.08 0.8

Sex

 Male — —

 Female 1.84 1.45, 2.33 <0.001

Income 1.00 1.00, 1.00 <0.001

1 OR = Odds Ratio, CI = Confidence Interval

tbl_regression(1
 logistic_model, 2
 exponentiate = TRUE,3
 label = list(4
 sex_cat ~ "Sex",5
 eyesight_cat ~ "Eyesight",6
 income ~ "Income"7
))8

27 / 84

You could put several together
linear_model_no_int <- lm(income ~ sex_cat + age_bir + race_eth_ca1

2
tbl_no_int <- tbl_regression(3
 linear_model_no_int, 4
 intercept = TRUE,5
 label = list(6
 sex_cat ~ "Sex",7
 race_eth_cat ~ "Race/ethnicity",8
 age_bir ~ "Age at first birth"9
))10

11
tbl_int <- tbl_regression(12
 linear_model, 13

intercept = TRUE14

28 / 84

You could put several together

Characteristic

Model 1 Model 2

Beta 95% CI
1

p-value Beta 95% CI
1

p-value

(Intercept) -1,201 -4,657, 2,256 0.5 1,029 -3,747, 5,805 0.7

Sex

 Male — — — —

 Female -833 -2,283, 617 0.3 -4,681 -10,553, 1,191 0.12

Age at first birth 571 448, 693 <0.001 482 304, 661 <0.001

Race/ethnicity

 Hispanic — — — —

 Black -287 -2,436, 1,863 0.8 -300 -2,448, 1,849 0.8

 Non-Black, Non-
Hispanic 6,434 4,516, 8,352 <0.001 6,418 4,501, 8,336 <0.001

Sex/age interaction

 Female * Age at
first birth 162 -77, 400 0.2

1
 CI = Confidence Interval

tbl_merge(list(tbl_no_int, tbl_int), 1
 tab_spanner = c("**Model 1**", "**Model 2**"))2

29 / 84

Regression package recommendation
from Xiyue: autoReg

Dependent:
income unit value Coefficient

(multivariable)

sex_cat Female
(N=704)

Mean ±
SD

16689.6 ±
14526.5

Male (N=501) Mean ±
SD

14292.3 ±
12321.0

-4681.25 (-10553.32
to 1190.82, p=.118)

age_bir [13,52] Mean ±
SD 23.4 ± 6.0 482.47 (303.51 to

661.42, p<.001)

race_eth_cat Black (N=307) Mean ±
SD

10794.8 ±
9468.8

Hispanic
(N=211)

Mean ±
SD

10489.7 ±
9209.5

-299.65 (-2448.39 to
1849.09, p=.784)

Non-Black,
Non-Hispanic

(N=687)

Mean ±
SD

18814.0 ±
14750.7

6418.46 (4500.91 to
8336.00, p<.001)

sex_cat:age_bir Male:

sex_cat:age_bir Female: 161.50 (-77.31 to
400.31, p=.185)

install.packages("autoReg")1
library(autoReg)2
autoReg(linear_model) |> 3
 myft()4

30 / 84

Exercise

31 / 84

Figures in R using ggplot()

32 / 84

Figures in R using ggplot()

33 / 84

Why ggplot?
Powerful and flexible: create complex and customized
visualizations easily

Reproducibility and efficiency: promotes reproducibility
by offering consistent syntax and saves time through
automation of plot creation

Layered approach: incrementally build visualizations
with multiple layers, exploring different aspects of data

Extensive customization: essentially infinite options to
tailor visualizations

34 / 84

ggplot builds figures by adding on pieces
via a particular “grammar of graphics”

35 / 84

Basic structure of a ggplot

{data}: must be a dataframe (or tibble!)

{xvar} and {yvar} are the names (unquoted) of the variables on the x- and y-axes

some graphs may not require both, or may require other parameters

{othvar} is some other unquoted variable name that defines a grouping or other
characteristic you want to map to an aesthetic

<characteristic>: you can map {othvar} (or a fixed "value") to any of a number
of aesthetic features of the figure; e.g., color, shape, size, linetype, etc.

<geom>: the geometric feature you want to use; e.g., point (scatterplot), line,
histogram, bar, etc.

"value": a fixed value that defines some characteristic of the figure; e.g., “red”, 10,
“dashed”

… : there are numerous other options to discover!

ggplot(data = {data}, 1
 aes(x = {xvar}, y = {yvar}, <characteristic> = {othvar}, ..2
 <geom>(<characteristic> = "value", ...) + 3
 ...4

36 / 84

Let’s walk through the creation of a figure

ggplot() doesn’t plot any data itself, it just sets up the data and variables

ggplot(data = nlsy, 1
 aes(x = eyesight_cat, 2
 fill = eyesight_cat))3

37 / 84

Let’s walk through the creation of a figure

geom_bar() creates a bar graph for the number of observations with a certain
value of the x variable

does not need a y variable

use geom_col() if you have a y variable that you want to use as the height of the bars

ggplot(data = nlsy, 1
 aes(x = eyesight_cat, 2
 fill = eyesight_cat)) +3
 geom_bar()4

Tip

38 / 84

Let’s walk through the creation of a figure

facet_grid() creates a panel for each value of another variable

can also do rows =

variable name should be within vars() (you can use helpers like
starts_with())

use facet_wrap() if you want to create panels that expand along rows and columns (e.g., to facet by many countries)

ggplot(data = nlsy, 1
 aes(x = eyesight_cat, 2
 fill = eyesight_cat)) +3
 geom_bar() +4
 facet_grid(cols = vars(glasses_cat))5

Tip

39 / 84

Let’s walk through the creation of a figure

scale_{fill/color}_{...}() functions change the color palette

some are appropriate for continuous variables, others discrete

scale_fill_viridis_d() good color-blind and black & white-friendly options

ggplot(data = nlsy, 1
 aes(x = eyesight_cat, 2
 fill = eyesight_cat)) +3
 geom_bar() +4
 facet_grid(cols = vars(glasses_cat)) +5
 scale_fill_brewer(palette = "Spectral",6
 direction = -1)7

Tip

40 / 84

Let’s walk through the creation of a figure

scale_{x/y}_{...}() functions change the axis scale and/or labeling

scale_y_log10() is helpful when plotting odds or risk ratios

ggplot(data = nlsy, 1
 aes(x = eyesight_cat, 2
 fill = eyesight_cat)) +3
 geom_bar() +4
 facet_grid(cols = vars(glasses_cat)) +5
 scale_fill_brewer(palette = "Spectral",6
 direction = -1) +7
 scale_x_discrete(breaks = c("Excellent", 8
 "Good", "Poor"),9
 name = "Eyesight quality")10

Tip

41 / 84

Let’s walk through the creation of a figure

theme_{...}() changes the “look” of the plot

but not the data color palette

find lots of themes and color palettes at

ggplot(data = nlsy, 1
 aes(x = eyesight_cat, 2
 fill = eyesight_cat)) +3
 geom_bar() +4
 facet_grid(cols = vars(glasses_cat)) +5
 scale_fill_brewer(palette = "Spectral",6
 direction = -1) +7
 scale_x_discrete(breaks = c("Excellent", 8
 "Good", "Poor"),9
 name = "Eyesight quality") +10
 theme_minimal()11

Tip

https://yutannihilation.github.io/allYourFigureAreBelongToUs/ggthemes/

42 / 84

https://yutannihilation.github.io/allYourFigureAreBelongToUs/ggthemes/

Let’s walk through the creation of a figure

you can also specify any component of the theme directly

lots of arguments can be set to element_blank() to get rid of them

ggplot(data = nlsy, 1
 aes(x = eyesight_cat, 2
 fill = eyesight_cat)) +3
 geom_bar() +4
 facet_grid(cols = vars(glasses_cat)) +5
 scale_fill_brewer(palette = "Spectral",6
 direction = -1) +7
 scale_x_discrete(breaks = c("Excellent", 8
 "Good", "Poor"),9
 name = "Eyesight quality") +10
 theme_minimal() +11
 theme(legend.position = "none",12
 axis.text.x = element_text(13
 angle = 45, vjust = 1, hjust = 1))14

Tip

43 / 84

Let’s walk through the creation of a figure

labs() can add subtitles, caption, alt text, as well as label any aesthetics (fill, color,
etc.)

there’s a lot of redundancy… we could have specified x = "Eyesight quality" here instead.

ggplot(data = nlsy, 1
 aes(x = eyesight_cat, 2
 fill = eyesight_cat)) +3
 geom_bar() +4
 facet_grid(cols = vars(glasses_cat)) +5
 scale_fill_brewer(palette = "Spectral",6
 direction = -1) +7
 scale_x_discrete(breaks = c("Excellent", 8
 "Good", "Poor"),9
 name = "Eyesight quality") +10
 theme_minimal() +11
 theme(legend.position = "none",12
 axis.text.x = element_text(13
 angle = 45, vjust = 1, hjust = 1))14

Tip

44 / 84

Let’s walk through the creation of a figure

coord_{...}() functions change the coordinate system

cartesian is already the default, but expand = FALSE means there is no extra
space beyond the axis limits

ggplot(data = nlsy, 1
 aes(x = eyesight_cat, 2
 fill = eyesight_cat)) +3
 geom_bar() +4
 facet_grid(cols = vars(glasses_cat)) +5
 scale_fill_brewer(palette = "Spectral",6
 direction = -1) +7
 scale_x_discrete(breaks = c("Excellent", 8
 "Good", "Poor"),9
 name = "Eyesight quality") +10
 theme_minimal() +11
 theme(legend.position = "none",12
 axis.text.x = element_text(13
 angle = 45, vjust = 1, hjust = 1)) 14
 labs(title = "Eyesight in NLSY",15
 y = NULL) +16
 coord_cartesian(expand = FALSE)17

Tip
45 / 84

What are some of the layers we may need
for this one?

46 / 84

Returning to our basic structure

Let’s walk through some more examples in depth

ggplot(data = {data}, 1
 aes(x = {xvar}, y = {yvar}, <characteristic> = {othvar}, ..2
 <geom>(<characteristic> = "value", ...) + 3
 ...4

47 / 84

Scatterplot: geom_point()

How are we specifying the type of plot (scatterplot)? How are we specifying the
variables to plot? How are we specifying the data used to plot it?

ggplot(data = nlsy, 1
 aes(x = income, y = age_bir)) +2
 geom_point()3

Question

48 / 84

What if we want to change the color of the
points?

When we put color = outside the aes(), it means we’re
giving it a specific color value that applies to all the points.

ggplot(data = nlsy, 1
 aes(x = income, y = age_bir)) +2
 geom_point(color = "blue")3

49 / 84

What if we want the color to correspond to
values of a variable?

When we put color = inside the aes() – with no quotation
marks – it means we’re telling it how it should assign
colors.

ggplot(data = nlsy, 1
 aes(x = income, y = age_bir, 2
 color = eyesight_cat)) +3
 geom_point()4

50 / 84

Alternative specification

Note that we could also put the aes() (aesthetics) in the
geom_() itself.

If within geom point(), it will only apply to that geom. Here it doesn’t matter

ggplot(data = nlsy, 1
 aes(x = income, y = age_bir)) +2
 geom_point(aes(color = eyesight_cat))3

Warning
51 / 84

Exercise

52 / 84

Let’s change the colors

We add on another layer to specify the colors we want.

There are a lot of options that follow the same naming scheme.

ggplot(data = nlsy, 1
 aes(x = income, y = age_bir, 2
 color = eyesight_cat)) +3
 geom_point() +4
 scale_color_manual(5
 values = c("blue", "purple", "red",6
 "green", "yellow"))7

Tip

53 / 84

Color palettes

There are tons of different options in R for color palettes.

You can play around with those in the RColorBrewer
package .

You can access the scales in that package with

ggplot(data = nlsy, 1
 aes(x = income, y = age_bir, 2
 color = eyesight_cat)) +3
 geom_point() +4
 scale_color_brewer(palette = "Set1")5

here
54 / 84

http://colorbrewer2.org/

Change the title on the legend

Each of the scale_color_x() functions has a lot of the same arguments. For a lot
more info visit the

ggplot(data = nlsy, 1
 aes(x = income, y = age_bir, 2
 color = eyesight_cat)) +3
 geom_point() +4
 scale_color_brewer(palette = "Set1", 5
 name = "Eyesight")6

Tip

ggplot2 book

55 / 84

https://ggplot2-book.org/scales-colour#sec-colour-discrete

Change the axis scale

There are a lot of scale_x_() and scale_y_() functions for
you to explore

The naming schemes work similarly to the scale_color ones, just with different
options!

ggplot(data = nlsy, 1
 aes(x = income, y = age_bir, 2
 color = eyesight_cat)) +3
 geom_point() +4
 scale_x_log10()5

Tip

56 / 84

We can label the axis better

The {scales} packages contains lots of helpful number
formatting functions

See the the examples in help(scale_x_log10) for some of
them

ggplot(nlsy,1
 aes(x = income, y = age_bir, 2
 color = eyesight_cat)) +3
 geom_point() +4
 scale_x_log10(labels = scales::dollar, 5
 limits = c(100, 100000),6
 breaks = c(100, 1000, 10000, 7
 name = "Income (USD)")8

57 / 84

Exercise

58 / 84

Facets
One of the most useful features of {ggplot2} is the
ability to “facet” a graph by splitting it up according to
the values of some variable

You might use this to show results for a lot of outcomes
or exposures at once, for example, or see how some
relationship differs by something like age or geographic
region

59 / 84

We’ll introduce bar graphs at the same time!

Notice how we only need an x = argument - the y-axis is
automatically the count with this geom.

ggplot(data = nlsy, aes(x = nsibs)) +1
 geom_bar() +2
 labs(x = "Number of siblings")3

60 / 84

The facet_grid() function splits up the data according to
a variable(s).
Here we’ve split it by region into columns.

ggplot(data = nlsy, aes(x = nsibs)) +1
 geom_bar() +2
 labs(x = "Number of siblings") +3
 facet_grid(cols = vars(region_cat))4

61 / 84

Since that was hard to read, we’ll probably want to split by
rows instead.

ggplot(data = nlsy, aes(x = nsibs)) +1
 geom_bar() +2
 labs(x = "Number of siblings") +3
 facet_grid(rows = vars(region_cat))4

62 / 84

We can also add a row for all of the data combined.

ggplot(data = nlsy, aes(x = nsibs)) +1
 geom_bar() +2
 labs(x = "Number of siblings") +3
 facet_grid(rows = vars(region_cat),4
 margins = TRUE)5

63 / 84

That squishes the other rows though! We can allow them
all to have their own axis limits with the scales =
argument.

Other options are “free_x” if we want to allow the x-axis
scale to vary, or just “free” to allow for both.

ggplot(data = nlsy, aes(x = nsibs)) +1
 geom_bar() +2
 labs(x = "Number of siblings") +3
 facet_grid(rows = vars(region_cat),4
 margins = TRUE,5
 scales = "free_y")6

64 / 84

We can use facet_wrap() instead, if we want to use both
multiple rows and columns for all the values of a variable.

ggplot(data = nlsy, aes(x = nsibs)) +1
 geom_bar() +2
 labs(x = "Number of siblings") +3
 facet_wrap(vars(region_cat))4

65 / 84

It tries to make a good decision, but you can override how
many columns you want!

ggplot(data = nlsy, aes(x = nsibs)) +1
 geom_bar() +2
 labs(x = "Number of siblings") +3
 facet_wrap(vars(region_cat), 4
 ncol = 3)5

66 / 84

Wait, these look like histograms!
When we have a variable with a lot of possible values, we
may want to bin them with a histogram

ggplot(nlsy, aes(x = income)) +1
 geom_histogram()2

67 / 84

stat_bin() using bins = 30. Pick better
value with binwidth.
We used discrete values with geom_bar(), but with
geom_histogram() we’re combining values: the default is
into 30 bins.

This is one of the most common warning messages I get
in R!

68 / 84

We can use bins = instead, if we want!

Note how this fits into the <characteristic> = "value" structure

ggplot(nlsy, aes(x = income)) +1
 geom_histogram(bins = 10)2

Note

69 / 84

Be aware that you may interpret your data differently depending on how you bin
it!

ggplot(nlsy, aes(x = income)) +1
 geom_histogram(bins = 100)2

Warning

70 / 84

Sometimes the bin width actually has some meaning so
we want to specify that

Here, each bin is $1000 – you can see the $5000 and
$10000 increments

ggplot(nlsy, aes(x = income)) +1
 geom_histogram(binwidth = 1000)2

71 / 84

Themes to make our plots prettier
You probably recognize the ggplot theme. But did you
know you can trick people into thinking you made your
figures in Stata?

72 / 84

Let’s store our plot first.

Plots work just like other R objects, meaning we can use the assignment arrow.

Can you figure out what each chunk of this code is doing to the figure?

p <- ggplot(nlsy, 1
 aes(x = factor(sleep_wknd), 2
 y = sleep_wkdy,3
 fill = factor(sleep_wknd))) +4
 geom_boxplot() +5
 scale_fill_discrete(guide = "none") +6
 labs(x = "hours slept on weekends",7
 y = "hours slept on weekends",8
 title = "The more people sleep on wee9
 subtitle = "According to NLSY data")10

11
p12

Question

73 / 84

We can change the overall theme

Since we stored the plot as p, it’s easy to add on / try
different things

p +1
 theme_minimal()2

74 / 84

p +1
 theme_dark()2

75 / 84

p +1
 theme_classic()2

76 / 84

p +1
 theme_void()2

77 / 84

Other packages contain themes, too.

p +1
 ggthemes::theme_fivethirtyei2

78 / 84

In case you miss Excel….

p +1
 ggthemes::theme_excel_new()2

79 / 84

You can even make your own!

p +1
 louisahstuff::my_theme()2

80 / 84

Finally, save it!
If your data changes, you can easily run the whole script
again:

The ggsave() function will automatically save the most
recent plot in your output.

To be safe, you can store your plot, e.g., p <- ggplot(...)
+ ... and then

library(tidyverse)1
dataset <- read_csv("dataset.csv")2
ggplot(dataset) + 3
 geom_point(aes(x = xvar, y = yvar))4
ggsave(filename = "scatterplot.pdf")5

ggsave(filename = "scatterplot.pdf", plot = p)1

81 / 84

More resources
Cheat sheet:

Catalog:

Cookbook:

Official package reference:

List of themes and instructions to make your own:

Book (includes theory behind ggplot):

https://www.rstudio.com/resources/cheatsheets/#ggplot2

http://shiny.stat.ubc.ca/r-graph-catalog/

http://www.cookbook-r.com/Graphs/

https://ggplot2.tidyverse.org/index.html

https://www.datanovia.com/en/blog/ggplot-themes-
gallery/

https://ggplot2-
book.org/

82 / 84

https://www.rstudio.com/resources/cheatsheets/#ggplot2
http://shiny.stat.ubc.ca/r-graph-catalog/
http://www.cookbook-r.com/Graphs/
https://ggplot2.tidyverse.org/index.html
https://www.datanovia.com/en/blog/ggplot-themes-gallery/
https://www.datanovia.com/en/blog/ggplot-themes-gallery/
https://ggplot2-book.org/
https://ggplot2-book.org/

Today’s summary
We learned how to use janitor and gtsummary packages
to make tables

We learned how to fit linear regressions and generlized
linear models

We learned how to use broom to tidy regression results

We learned the basics of ggplot2

83 / 84

Today’s functions
tabyl(): create frequency tables

tbl_summary(): create summary tables with a lot of
covariates

lm(): fit linear regression models

glm(): fit generalized linear models

tbl_regression(): create regression tables

tidy(): tidy regression results

ggplot(): create figures

geom_...(): add a geometric feature to a figure

scale_...(): change the scale of an axis or aesthetic

facet_...(): split a figure into panels 84 / 84

