
ID 543: Day 3
Introduction to R

1 / 54

Homework review

2 / 54

Today’s goals
Understand how to use summarize() and group_by() to
get summary statistics

Learn how to read in data from different file types

Understand how to use the here package to refer to files

Learn some tools for dealing with missing data

Learn how to join datasets using left_join(),
right_join(), full_join(), and inner_join()

3 / 54

Summary statistics
We can get certain summary statistics about our data
with summary(), which we can use either on an entire
dataframe or on a single variable

nlsy_sleep <- nlsy |> 1
 select(id, contains("sleep"), age_bir, sex)2
summary(nlsy_sleep$age_bir)3

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 13.00 19.00 22.00 23.45 27.00 52.00

summary(nlsy_sleep)1

 id sleep_wkdy sleep_wknd age_bir
 Min. : 3 Min. : 0.000 Min. : 0.000 Min. :13.00
 1st Qu.: 2317 1st Qu.: 6.000 1st Qu.: 6.000 1st Qu.:19.00
 Median : 4744 Median : 7.000 Median : 7.000 Median :22.00
 Mean : 5229 Mean : 6.643 Mean : 7.267 Mean :23.45
 3rd Qu.: 7937 3rd Qu.: 8.000 3rd Qu.: 8.000 3rd Qu.:27.00
 Max. :12667 Max. :13.000 Max. :14.000 Max. :52.00
 sex
 Min. :1.000
1st Qu :1 000

4 / 54

Summary statistics
We can also apply certain functions to a variable(s) to get
a single statistic: mean(), median(), var(), sd(), cov(), cor(),
min(), max(), quantile(), etc.

median(nlsy$age_bir)1

[1] 22

cor(nlsy$sleep_wkdy, nlsy$sleep_wknd)1

[1] 0.7101579

quantile(nlsy$income, probs = c(0.1, 0.9))1

 10% 90%
 3177.2 33024.0

5 / 54

New function: summarize()
But what if we want a lot of summary statistics – just not
those that come with the summary() function?

For example, it doesn’t give us a standard deviation!

We can use summarize()

summarize(nlsy, 1
 sd_age_bir = sd(age_bir),2
 cor_sleep = cor(sleep_wkdy, sleep_wknd),3
 ten_pctle_inc = quantile(income, probs = 0.1),4
 ninety_pctle_inc = quantile(income, probs = 0.9))5

A tibble: 1 × 4
 sd_age_bir cor_sleep ten_pctle_inc ninety_pctle_inc
 <dbl> <dbl> <dbl> <dbl>
1 5.99 0.710 3177. 33024

6 / 54

summarize() specifics
Important to note:

Takes a dataframe as its first argument. That means we
can use pipes!

Returns a tibble – helpful if you want to use those values
in a figure or table.

Can give the summary statistics names.

Can ask for any type of function of the variables
(including one you make up yourself).

7 / 54

Combining with other functions
Because we can pipe, we can also look at statistics of
variables that we make using mutate(), in a dataset we’ve
subsetted with filter().

Note that we’re standardizing the data before filtering. Or else the mean would
be 0!

nlsy |>1
 mutate(age_bir_stand = (age_bir - mean(age_bir)) / sd(age_bir)) 2
 filter(sex == 1) |>3
 summarize(mean_men = mean(age_bir_stand))4

A tibble: 1 × 1
 mean_men
 <dbl>
1 0.283

Note

8 / 54

Exercise

9 / 54

What if we want both groups at once?
nlsy |>1
 filter(sex == 1) |>2
 summarize(age_bir_men = mean(age_bir))3

A tibble: 1 × 1
 age_bir_men
 <dbl>
1 25.1

nlsy |>1
 filter(sex == 2) |>2
 summarize(age_bir_women = mean(age_bir))3

A tibble: 1 × 1
 age_bir_women
 <dbl>
1 22.2

10 / 54

We can “group” tibbles using group_by()
We can tell it’s “grouped” and how many groups there are
by printing out the data.

The data itself won’t look (much) different, but we’ll be
able to perform grouped functions on it.

nlsy_by_region <- group_by(nlsy, region)1
nlsy_by_region2

A tibble: 1,205 × 15
Groups: region [4]
 id glasses eyesight sleep_wkdy sleep_wknd nsibs race_eth sex region
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 3 0 1 5 7 3 3 2 1
 2 6 1 2 6 7 1 3 1 1
 3 8 0 2 7 9 7 3 2 1
 4 16 1 3 6 7 3 3 2 1
 5 18 0 3 10 10 2 3 1 3
 6 20 1 2 7 8 2 3 2 1
 7 27 0 1 8 8 1 3 2 1
 8 49 1 1 8 8 6 3 2 1
 9 57 1 2 7 8 1 3 2 1
10 67 0 1 8 8 1 3 1 1

11 / 54

group_by() and summarize()
This function is especially important when calculating
summary statistics, which we often want to be stratified.

nlsy_by_region <- group_by(nlsy, region)1
2

summarize(nlsy_by_region,3
 mean_inc = mean(income))4

A tibble: 4 × 2
 region mean_inc
 <dbl> <dbl>
1 1 17771.
2 2 16698.
3 3 14101.
4 4 13360.

12 / 54

Stratify with group_by() |> summarize()
Like the other functions we’ve seen, we can use pipes:

nlsy |>1
 mutate(income_stand = (income - mean(income))/sd(income)) |>2
 group_by(region) |>3
 summarize(mean_inc = mean(income_stand),4
 sd_inc = sd(income_stand))5

A tibble: 4 × 3
 region mean_inc sd_inc
 <dbl> <dbl> <dbl>
1 1 0.186 1.17
2 2 0.106 0.958
3 3 -0.0891 1.03
4 4 -0.145 0.810

13 / 54

Counting groups
Sometimes we just want to know how many observations
are in a group. We already saw how to do that with
count(), but we can also do it with group_by() |>
summarize():

nlsy |> 1
 count(sex)2

A tibble: 2 × 2
 sex n
 <dbl> <int>
1 1 501
2 2 704

nlsy |>1
 group_by(sex) |>2
 summarize(n = n())3

A tibble: 2 × 2
 sex n
 <dbl> <int>
1 1 501
2 2 704

14 / 54

Exercise

15 / 54

Getting other data into R
We have been reading in data as an .rds file:

We could also read it in as a .csv file:

nlsy_rds <- read_rds("https://github.com/louisahsmith/data/raw/mai1

nlsy_csv <- read_csv("https://github.com/louisahsmith/data/raw/mai1

16 / 54

What do you notice about the differences?
nlsy_rds |> select(id, contain1

A tibble: 1,205 × 5
 id eyesight_cat glasses_cat
race_eth_cat sex_cat
 <dbl> <fct> <fct>
<fct> <fct>
 1 3 Excellent Doesn't wear glasses
Non-Black, Non-Hispanic Female
 2 6 Very Good Wears glasses/contacts
Non-Black, Non-Hispanic Male
 3 8 Very Good Doesn't wear glasses
Non-Black, Non-Hispanic Female
 4 16 Good Wears glasses/contacts
Non-Black, Non-Hispanic Female
 5 18 Good Doesn't wear glasses
Non-Black, Non-Hispanic Male
 6 20 Very Good Wears glasses/contacts
Non-Black, Non-Hispanic Female
 7 27 Excellent Doesn't wear glasses
Non-Black, Non-Hispanic Female
 8 49 Excellent Wears glasses/contacts
Non-Black, Non-Hispanic Female
 9 57 Very Good Wears glasses/contacts
Non-Black, Non-Hispanic Female
10 67 Excellent Doesn't wear glasses
Non Black Non Hispanic Male

nlsy_csv |> select(id, contain1

A tibble: 1,205 × 6
 id eyesight_cat glasses_cat
race_eth_cat sex_cat slp_cat_wkdy
 <dbl> <chr> <chr>
<chr> <chr> <chr>
 1 3 Excellent Doesn't wear glasses
Non-Black, No… Female some
 2 6 Very Good Wears glasses/contacts
Non-Black, No… Male some
 3 8 Very Good Doesn't wear glasses
Non-Black, No… Female ideal
 4 16 Good Wears glasses/contacts
Non-Black, No… Female some
 5 18 Good Doesn't wear glasses
Non-Black, No… Male lots
 6 20 Very Good Wears glasses/contacts
Non-Black, No… Female ideal
 7 27 Excellent Doesn't wear glasses
Non-Black, No… Female ideal
 8 49 Excellent Wears glasses/contacts
Non-Black, No… Female ideal
 9 57 Very Good Wears glasses/contacts
Non-Black, No… Female ideal
10 67 Excellent Doesn't wear glasses
Non Black No Male ideal

17 / 54

.rds is an R-specific file for a single object
It will be the exact same object when you read it back in.

You can save any object, not just a dataframe:

What is y going to print?

write_rds(nlsy_rds, "nlsy.rds")1

x <- c(4, 5, 6)1
write_rds(x, "numbers.rds")2

y <- read_rds("numbers.rds")1
y2

18 / 54

.csv files are much more general but don’t
maintain things like factors

19 / 54

.csv files might need a little more
specification to read in

read_csv("https://github.com/louisahsmith/data/raw/main/nlsy/nlsy.csv") |> print(n = 2)1

A tibble: 12,686 × 14
 H0012400 H0012500 H0022300 H0022500 R0000100 R0009100 R0173600 R0214700
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 -4 -4 -4 -4 1 1 5 3
2 0 1 4 3 2 8 5 3
ℹ 12,684 more rows
ℹ 6 more variables: R0214800 <dbl>, R0216400 <dbl>, R0217900 <dbl>,
R0402800 <dbl>, R7090700 <dbl>, T4120500 <dbl>

nlsy_full <- read_csv(1
 "https://github.com/louisahsmith/data/raw/main/nlsy/nlsy.csv", skip = 1,2
 col_names = c("glasses", "eyesight", "sleep_wkdy", "sleep_wknd", 3
 "id", "nsibs", "samp", "race_eth", "sex", "region", 4
 "income", "res_1980", "res_2002", "age_bir"),5
 na = c("-1", "-2", "-3", "-4", "-5", "-998"))6
print(nlsy_full, n = 2)7

A tibble: 12,686 × 14
 glasses eyesight sleep_wkdy sleep_wknd id nsibs samp race_eth sex region
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 NA NA NA NA 1 1 5 3 2 1
2 0 1 4 3 2 8 5 3 2 1
ℹ 12,684 more rows
ℹ 4 more variables: income <dbl>, res_1980 <dbl>, res_2002 <dbl>,
age_bir <dbl>

20 / 54

Corresponding write_() function
If you are sharing data with collaborators who don’t use R,
or you want to look at it in Excel, you can save a dataframe
as a .csv file:

The data will be saved in your “working directory” (see the
top of your console)

We’ll talk about directories in a little bit!

nlsy_rds <- read_rds("https://github.com/louisahsmith/data/raw/mai1
write_csv(nlsy_rds, "nlsy.csv", na = "")2

Note

21 / 54

Other functions come from the {haven}
package

library(haven)1
medical_dta <- read_dta("http://www.principlesofeconometrics.com/s2
medical_sas <- read_sas("http://www.principlesofeconometrics.com/s3

glimpse(medical_dta)1

Rows: 1,000
Columns: 6
$ id <dbl> 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, …
$ year <dbl> 1, 2, 3, 4, 5, 1, 2, 3, 4, 5,
1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, …
$ medexp <dbl> 9, 9, 9, 10, 11, 6, 7, 7, 7, 7,
4, 3, 5, 4, 4, 5, 3, 6, 6, 3, 4…
$ inc <dbl> 49, 51, 55, 58, 61, 48, 48, 58,
59, 63, 46, 51, 55, 58, 63, 68,…
$ age <dbl> 51, 52, 53, 54, 55, 62, 63, 64,
65, 66, 57, 58, 59, 60, 61, 48,…
$ insur <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, …

glimpse(medical_sas)1

Rows: 1,000
Columns: 6
$ ID <dbl> 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, …
$ YEAR <dbl> 1, 2, 3, 4, 5, 1, 2, 3, 4, 5,
1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, …
$ MEDEXP <dbl> 9, 9, 9, 10, 11, 6, 7, 7, 7, 7,
4, 3, 5, 4, 4, 5, 3, 6, 6, 3, 4…
$ INC <dbl> 49, 51, 55, 58, 61, 48, 48, 58,
59, 63, 46, 51, 55, 58, 63, 68,…
$ AGE <dbl> 51, 52, 53, 54, 55, 62, 63, 64,
65, 66, 57, 58, 59, 60, 61, 48,…
$ INSUR <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, …

22 / 54

Or {readxl}

All these functions take arguments, but read_excel()
takes a ton of arguments – which sheet, how many rows
to read, whether there are column names, a specific range
to read in, etc….

See help(read_excel) for details!

library(readxl)1
dat <- read_excel("excel_data.xlsx")2

23 / 54

Exercise

24 / 54

Where are these files? File paths
list.files()1

 [1] "_extensions" "_freeze" "_publish.yml" "_quarto.yml"
 [5] "_site" "cheat_sheet.html" "cheat_sheet.qmd" "data"
 [9] "data.html" "data.qmd" "decktape calls" "exercises"
[13] "homeworks" "ID543 2024.Rproj" "img" "index.html"
[17] "index.qmd" "pages" "site_libs" "slides"
[21] "www"

getwd()1

[1] "/Users/l.smith/Documents/Teaching/Harvard/ID543 2024"

file.path("data", "my_dataset.csv")1

[1] "data/my_dataset.csv"

file.path("~", "Downloads", "my_dataset.csv")1

[1] "~/Downloads/my_dataset.csv"

file.path("C:", "Users", "Downloads", "my_dataset.csv")1

[1] "C:/Users/Downloads/my_dataset.csv" 25 / 54

The problem with setwd()
setwd() changes the working directory, leading to
potential issues in collaboration and reproducibility

You and I don’t have the same file structure!

For example, my current working directory is

It’s also really annoying to change your working
directory when you move around files and folders, even
if it’s just you using them

getwd()1

[1] "/Users/l.smith/Documents/Teaching/Harvard/ID543 2024"

26 / 54

Do you think this code from 2015 still
works?

27 / 54

R Projects
An .Rproj file is mostly just a
placeholder. It remembers various
options, and makes it easy to open a
new RStudio session that starts up in
the correct working directory. You never
need to edit it directly.

A README file can just be a text file
that includes notes for yourself or
future users.

I like to have a folder for raw data –
which I never touch – and a folder(s) for
datasets that I create along the way.

my-project/
├─ my-project.Rproj
├─ README
├─ data/
│ ├── raw/
│ └── processed/
├─ R/
├─ results/
│ ├── tables/
│ ├── figures/
│ └── output/
└─ docs/

28 / 54

R Projects
Demo

29 / 54

Referring to files with the here package

The here package lets you refer to files without worrying too much about relative
file paths.

Construct file paths with reference to the top directory holding your .Rproj file.

here::here("data", "raw", "data.csv") for me, here, becomes
"/Users/l.smith/Documents/Teaching/Harvard/ID543 2024/data/raw/data.csv"

But if I send you my code to run, it will become whatever file path you need it to
be, as long as you’re running it within the R Project.

source(here::here("R", "functions.R"))1
2

dat <- read_csv(here::here("data", "raw", "data.csv"))3
4

p <- ggplot(dat) + geom_point(aes(x, y))5
6

ggsave(plot = p, 7
 filename = here::here("results", "figures", "fig.pdf"))8

30 / 54

Referring to the here package

is equivalent to

I just prefer to write out the package name whenever I
need it, but you can load the package for your entire
session if you want.

Note that you can refer to any function without loading the whole package this
way, e.g. haven::read_dta()

here::here()1

library(here)1
here()2

Note

31 / 54

Exercise

32 / 54

Missing values
R uses NA for missing values

Unlike some other statistical software, it will return NA to
any logical statement

This makes it somewhat harder to deal with but also
harder to make mistakes
3 < NA1

[1] NA

mean(c(1, 2, NA))1

[1] NA

mean(c(1, 2, NA), na.rm = TRUE)1

[1] 1.5

33 / 54

Special NA functions
Certain functions deal with missing values explicitly

vals <- c(1, 2, NA)1
is.na(vals)2

[1] FALSE FALSE TRUE

anyNA(vals)1

[1] TRUE

na.omit(vals)1

[1] 1 2

34 / 54

Specific missingness
You know some value is implausible, whether for everyone
or for a specific observation

na_if(x, y) will replace values in x that are equal to y with
NA

nlsy <- nlsy |>1
 mutate(sleep_wknd = ifelse(sleep_wknd > 24, NA, sleep_wknd),2
 # OR3
 sleep_wknd = case_when(4
 sleep_wknd > 24 ~ NA,5
 .default = sleep_wknd6
),7
 income = ifelse(id == 283, NA, income),8
 nsibs = na_if(nsibs, 99))9

35 / 54

Read in NA’s directly
In NLSY, -1 = Refused, -2 = Don’t know, -3 = Invalid missing,
-4 = Valid missing, -5 = Non-interview

Other files might have . for missing, or 999.

You have to write the values as strings, even if they’re
numbers

nlsy_cols <- c("glasses", "eyesight", "sleep_wkdy", "sleep_wknd", 1
 "id", "nsibs", "samp", "race_eth", "sex", "region",2
 "income", "res_1980", "res_2002", "age_bir")3
nlsy <- read_csv("https://github.com/louisahsmith/data/raw/main/nl4
 na = c("-1", "-2", "-3", "-4", "-5", "-998"),5
 skip = 1, col_names = nlsy_cols)6

36 / 54

Reasons for missingness
Caveat: This previous way, you lose the info about the
reason for missingness. If that’s important, read in the
data first, create a variable for missingness reason (e.g.,
use fct_recode()), then changes the values to NA.

nlsy <- read_csv("https://github.com/louisahsmith/data/raw/main/nl1
 skip = 1, col_names = nlsy_cols) |> 2
 mutate(age_bir_missing = ifelse(age_bir > 0, NA, age_bir),3
 age_bir_missing = fct_recode(4
 factor(age_bir_missing), "Refused" = "-1", 5
 "Don't know" = "-2", "Invalid missing" = "-3",6
 "Valid missing" = "-4", "Non-interview" = "-5",7
 "Other missing" = "-998"))8
summary(nlsy$age_bir_missing)9

 Other missing Non-interview Invalid missing NA's
 1343 5385 15 5943

37 / 54

Complete cases
Sometimes you may just want to get rid of all the rows
with missing values.

Don’t do this without good reason! It will exlude rows with any missing values,
even in variables you’re not using.

nrow(nlsy)1

[1] 12686

nlsy_cc <- nlsy |> filter(complete.cases(nlsy))1
nrow(nlsy_cc)2

[1] 6743

nlsy2 <- nlsy |> na.omit() # same1

Caution

38 / 54

Exercise

39 / 54

Joins
There are multiple functions in the tidyverse (specifically,
the {dplyr} package) for joining/merging data

Mutating joins merge two datasets based on matching
variable(s), adding together the new columns from the
joined dataframe

We will also refer to the x dataframe as the left-hand side (LHS) and the y
dataframe as the right-hand side (RHS)

left_join(x, y, by = join_by(xcol == ycol))1

Note

40 / 54

Merging with kids
The NLSY also included the kids of the moms in the
NLSY79 survey that we’re using.

Birthweight is in ounces

nlsy_kids1

A tibble: 11,551 × 6
 id_kid id_mom sex_kid dob_kid agebir_mom bwt_kid
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 201 2 2 1993 34 139
 2 202 2 2 1994 35 NA
 3 301 3 2 1981 19 162
 4 302 3 2 1983 22 144
 5 303 3 2 1986 24 112
 6 401 4 1 1980 18 107
 7 403 4 2 1997 34 NA
 8 801 8 2 1976 17 119
 9 802 8 1 1979 20 107
10 803 8 2 1982 24 146
ℹ 11,541 more rows

Note
41 / 54

Left join

It will automatically look for matching columns (can be
dangerous!) but if none, need to specify:

left_join(nlsy_sleep, nlsy_kids)1

Error in `left_join()`:
! `by` must be supplied when `x` and `y` have no common variables.
ℹ Use `cross_join()` to perform a cross-join.

left_join(nlsy_sleep, nlsy_kids, 1
 by = join_by(id == id_mom))2

A tibble: 2,284 × 10
 id sleep_wkdy sleep_wknd age_bir sex id_kid sex_kid dob_kid agebir_mom
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 3 5 7 19 2 301 2 1981 19
 2 3 5 7 19 2 302 2 1983 22
 3 3 5 7 19 2 303 2 1986 24
 4 6 6 7 30 1 NA NA NA NA
 5 8 7 9 17 2 801 2 1976 17
 6 8 7 9 17 2 802 1 1979 20
 7 8 7 9 17 2 803 2 1982 24
 8 16 6 7 31 2 1601 1 1990 31

42 / 54

Left join
LHS rows are duplicated if we have multiple matches, but
we lose any rows in the RHS dataset that don’t have a
match

In this case, the moms of some of the kids aren’t in the
nlsy_sleep dataset, so kids without moms are lost

n_distinct(nlsy_kids$id_kid)1

[1] 11551

nlsy_left <- left_join(nlsy_sleep, nlsy_kids,1
 by = join_by(id == id_mom))2

3
n_distinct(nlsy_left$id_kid)4

[1] 1784

43 / 54

44 / 54

Right join

Now we don’t have the dads, because there are no
matching ids in the RHS dataset

But we do keep all the kids, even those without moms
in the LHS

right_join(nlsy_sleep, nlsy_kids, by = join_by(id == id_mom))1

A tibble: 11,551 × 10
 id sleep_wkdy sleep_wknd age_bir sex id_kid sex_kid dob_kid agebir_mom
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 3 5 7 19 2 301 2 1981 19
 2 3 5 7 19 2 302 2 1983 22
 3 3 5 7 19 2 303 2 1986 24
 4 8 7 9 17 2 801 2 1976 17
 5 8 7 9 17 2 802 1 1979 20
 6 8 7 9 17 2 803 2 1982 24
 7 16 6 7 31 2 1601 1 1990 31
 8 16 6 7 31 2 1602 1 1993 34
 9 16 6 7 31 2 1603 2 1996 37
10 20 7 8 30 2 2001 2 1990 30
ℹ 11,541 more rows
ℹ 1 more variable: bwt_kid <dbl>

45 / 54

46 / 54

Full join: we want everything!

This dataset is larger than either of the initial datasets
alone: it has the dads without kids and the kids without
moms

full_join(nlsy_sleep, nlsy_kids, by = join_by(id == id_mom))1

A tibble: 12,052 × 10
 id sleep_wkdy sleep_wknd age_bir sex id_kid sex_kid dob_kid agebir_mom
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 3 5 7 19 2 301 2 1981 19
 2 3 5 7 19 2 302 2 1983 22
 3 3 5 7 19 2 303 2 1986 24
 4 6 6 7 30 1 NA NA NA NA
 5 8 7 9 17 2 801 2 1976 17
 6 8 7 9 17 2 802 1 1979 20
 7 8 7 9 17 2 803 2 1982 24
 8 16 6 7 31 2 1601 1 1990 31
 9 16 6 7 31 2 1602 1 1993 34
10 16 6 7 31 2 1603 2 1996 37
ℹ 12,042 more rows
ℹ 1 more variable: bwt_kid <dbl>

47 / 54

48 / 54

Inner join: we only want matches

This dataset has only the moms with kids (no dads) and
the kids with moms

It still has multiple rows per mom – one for each kid

inner_join(nlsy_sleep, nlsy_kids, by = join_by(id == id_mom))1

A tibble: 1,783 × 10
 id sleep_wkdy sleep_wknd age_bir sex id_kid sex_kid dob_kid agebir_mom
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 3 5 7 19 2 301 2 1981 19
 2 3 5 7 19 2 302 2 1983 22
 3 3 5 7 19 2 303 2 1986 24
 4 8 7 9 17 2 801 2 1976 17
 5 8 7 9 17 2 802 1 1979 20
 6 8 7 9 17 2 803 2 1982 24
 7 16 6 7 31 2 1601 1 1990 31
 8 16 6 7 31 2 1602 1 1993 34
 9 16 6 7 31 2 1603 2 1996 37
10 20 7 8 30 2 2001 2 1990 30
ℹ 1,773 more rows
ℹ 1 more variable: bwt_kid <dbl>

49 / 54

50 / 54

Join by multiple variables
I only want the kid that was the mom’s first

I’m going to match on the age at first birth on the RHS
first_births <- inner_join(nlsy_sleep, nlsy_kids, 1
 by = join_by(id == id_mom,2
 age_bir == agebir_mom))3

4
first_births5

A tibble: 708 × 9
 id sleep_wkdy sleep_wknd age_bir sex id_kid sex_kid dob_kid bwt_kid
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 3 5 7 19 2 301 2 1981 162
 2 8 7 9 17 2 801 2 1976 119
 3 16 6 7 31 2 1601 1 1990 109
 4 20 7 8 30 2 2001 2 1990 129
 5 27 8 8 27 2 2701 2 1988 117
 6 49 8 8 24 2 4901 1 1982 139
 7 57 7 8 21 2 5701 1 1979 148
 8 86 8 8 17 2 8601 2 1977 97
 9 96 7 7 19 2 9601 2 1980 124
10 97 7 8 29 2 9701 1 1987 48

51 / 54

Exercise

52 / 54

Today’s summary
We can use summarize() to get summary statistics of our
data

We can use group_by() to group our data and then get
summary statistics within those groups

Missing values in R are NA

R projects are a good way to keep your files organized

We can use the here package to refer to files in a project

We can use left_join(), right_join(), full_join(), and
inner_join() to merge datasets

53 / 54

Today’s functions
summarize(): calculate summary statistics

group_by(): group data

here::here(): refer to files in a project

read_rds(), read_csv(), read_dta(), read_sas(),
read_excel(): read in data

complete.cases(), na.omit(): remove missing values

is.na(), anyNA(): check for missing values

na_if(): replace values with NA

left_join(), right_join(), full_join(), inner_join():
merge datasets

54 / 54

