Introduction to R
select()
filter()
%>%
or |>
) to chain functions togetherselect()
!# A tibble: 1,205 × 5
id income eyesight sex region
<dbl> <dbl> <dbl> <dbl> <dbl>
1 3 22390 1 2 1
2 6 35000 2 1 1
3 8 7227 2 2 1
4 16 48000 3 2 1
5 18 4510 3 1 3
6 20 50000 2 2 1
7 27 20000 1 2 1
8 49 23900 1 2 1
9 57 23289 2 2 1
10 67 35000 1 1 1
# ℹ 1,195 more rows
select()
syntaxmutate()
, the first argument is the dataset you want to select from-
)select()
syntaxThere are also a lot of “helpers”!
var1:var10
(consecutively placed variables)all_of()
/any_of()
starts_with()
ends_with()
contains()
matches()
(like contains, but for regular expressions)num_range()
(for patterns like x01
, x02
, …)everything()
where(is.factor)
(or anything else)Tip
Like the fct_()
functions, you don’t need to memorize all these! Just know they exist and you can look them up when you need them.
all_of()
Notice that the variable names we used in select()
weren’t in quotation marks.
Let’s say you have a vector of column names that you want. Then you can use all_of()
to choose them.
# A tibble: 1,205 × 3
age_bir nsibs region
<dbl> <dbl> <dbl>
1 19 3 1
2 30 1 1
3 17 7 1
4 31 3 1
5 19 2 3
6 30 2 1
7 27 1 1
8 24 6 1
9 21 1 1
10 36 1 1
# ℹ 1,195 more rows
If you don’t want an error if they don’t exist, use any_of()
.
starts_with
, ends_with
You can also use starts_with()
and ends_with()
to select variables that start or end with a certain string.
What variables are in new_subset
?
Note
Recall that nlsy
has variables “id”, “glasses”, “eyesight”, “sleep_wkdy”, “sleep_wknd”, “nsibs”, “race_eth”, “sex”, “region”, “income”, “age_bir”, “eyesight_cat”, “glasses_cat”, “race_eth_cat”, “sex_cat”.
starts_with
, ends_with
# A tibble: 1,205 × 3
sleep_wkdy sleep_wknd id
<dbl> <dbl> <dbl>
1 5 7 3
2 6 7 6
3 7 9 8
4 6 7 16
5 10 10 18
6 7 8 20
7 8 8 27
8 8 8 49
9 7 8 57
10 8 8 67
# ℹ 1,195 more rows
Note
Variables won’t be repeated even if they meet multiple criteria!
starts_with
, ends_with
Use &
in between multiple criteria if they have to meet all of them
where()
where()
is a helper that lets you select variables based on their properties
# A tibble: 1,205 × 4
eyesight_cat glasses_cat race_eth_cat sex_cat
<fct> <fct> <fct> <fct>
1 Excellent Doesn't wear glasses Non-Black, Non-Hispanic Female
2 Very Good Wears glasses/contacts Non-Black, Non-Hispanic Male
3 Very Good Doesn't wear glasses Non-Black, Non-Hispanic Female
4 Good Wears glasses/contacts Non-Black, Non-Hispanic Female
5 Good Doesn't wear glasses Non-Black, Non-Hispanic Male
6 Very Good Wears glasses/contacts Non-Black, Non-Hispanic Female
7 Excellent Doesn't wear glasses Non-Black, Non-Hispanic Female
8 Excellent Wears glasses/contacts Non-Black, Non-Hispanic Female
9 Very Good Wears glasses/contacts Non-Black, Non-Hispanic Female
10 Excellent Doesn't wear glasses Non-Black, Non-Hispanic Male
# ℹ 1,195 more rows
Think back to how we named our factor variables. What’s another way we could have selected them?
You can use these helpers to rearrange variables
# A tibble: 1,205 × 15
id eyesight_cat glasses_cat race_eth_cat sex_cat glasses eyesight
<dbl> <fct> <fct> <fct> <fct> <dbl> <dbl>
1 3 Excellent Doesn't wear glasses Non-Black, … Female 0 1
2 6 Very Good Wears glasses/conta… Non-Black, … Male 1 2
3 8 Very Good Doesn't wear glasses Non-Black, … Female 0 2
4 16 Good Wears glasses/conta… Non-Black, … Female 1 3
5 18 Good Doesn't wear glasses Non-Black, … Male 0 3
6 20 Very Good Wears glasses/conta… Non-Black, … Female 1 2
7 27 Excellent Doesn't wear glasses Non-Black, … Female 0 1
8 49 Excellent Wears glasses/conta… Non-Black, … Female 1 1
9 57 Very Good Wears glasses/conta… Non-Black, … Female 1 2
10 67 Excellent Doesn't wear glasses Non-Black, … Male 0 1
# ℹ 1,195 more rows
# ℹ 8 more variables: sleep_wkdy <dbl>, sleep_wknd <dbl>, nsibs <dbl>,
# race_eth <dbl>, sex <dbl>, region <dbl>, income <dbl>, age_bir <dbl>
Tip
If you end with everything()
, it’s basically saying “and everything else” in its original order.
We usually don’t do an analysis in an entire dataset. We usually apply some eligibility criteria to find the people who we will analyze. One function we can use to do that in R is filter()
.
filter()
syntaxfilter()
the dataset first, then we give it a series of criteria that we want to subset our data on.case_when()
, these criteria should be questions with TRUE
/FALSE
answers. We’ll keep all those rows for which the answer is TRUE
.&
or just by separating with commas, and we’ll get back only the rows that answer TRUE
to all of them.nrow()
nrow()
tells you how many rows are in a dataset
Of course, you can look in the environment pane, print a tibble, or use a function like glimpse()
, but with nrow()
you can get the number of rows in a dataset programatically
Tip
There’s also ncol()
for columns, or dim()
for both!
When we used case_when()
, we got TRUE
/FALSE
answers when we asked whether a variable was >
or <
some number, for example.
When we want to know if something is
==
!=
>=
<=
We also can ask about multiple conditions with &
(and) and |
(or).
filter()
We are pulling out everyone for whom the statement evaluates to TRUE
:
[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
[13] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
[25] TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[37] TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE
[49] FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE
[61] FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
[73] FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
[85] FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[97] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[109] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
[121] TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
[133] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[145] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
[157] FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE
[169] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[181] FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE
[193] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[205] FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[217] FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
[229] TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE
[241] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
[253] FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE
[265] FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
[277] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
[289] TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[301] FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[313] TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[325] FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[337] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[349] FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE
[361] TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
[373] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[385] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
[397] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[409] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE
[421] TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[433] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
[445] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
[457] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE
[469] FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE
[481] FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
[493] TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
[505] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[517] TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
[529] TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
[541] TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
[553] FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[565] FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE
[577] FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[589] FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE
[601] TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
[613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[625] FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE
[637] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
[649] FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
[661] FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE
[673] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
[685] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[697] TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[709] TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE
[721] TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[733] TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE
[745] FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
[757] TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
[769] FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE
[781] TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
[793] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[805] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE
[817] TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[829] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE
[841] FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[853] TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
[865] TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[877] TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[889] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[901] FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE
[913] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
[925] TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE
[937] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
[949] TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE
[961] FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE
[973] FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
[985] FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
[997] TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE
[1009] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[1021] FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE
[1033] FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[1045] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
[1057] FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
[1069] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[1081] FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[1093] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
[1105] TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[1117] TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE
[1129] FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
[1141] TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
[1153] TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE
[1165] FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
[1177] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
[1189] TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
[1201] TRUE TRUE TRUE FALSE TRUE
[1] TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE
[13] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[37] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[49] FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE
[61] TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[73] TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[85] FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
[97] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE
[109] FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
[121] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[133] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[145] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[157] FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE
[169] TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[181] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
[193] TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[205] FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[217] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[229] FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE
[241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE
[253] TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[265] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[277] TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[289] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[301] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[313] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
[325] FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE
[337] TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
[349] TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
[361] FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
[373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
[385] FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[397] TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[409] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[421] FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
[433] FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[445] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
[457] FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[469] FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[481] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[493] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
[505] FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
[517] FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE
[529] TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[541] FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[553] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE
[565] TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE
[577] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
[589] TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
[601] TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[613] TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
[625] FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE
[637] FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[649] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[661] FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE
[673] FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
[685] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
[709] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE
[721] TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE
[733] FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE
[745] FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[757] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[769] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
[781] TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[793] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[805] FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[817] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE
[829] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE
[841] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[853] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
[865] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
[877] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[889] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
[901] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[913] FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
[925] TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
[937] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE
[949] FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
[961] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[973] TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
[985] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
[997] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE
[1009] TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[1033] TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
[1045] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE
[1057] FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE
[1069] TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
[1081] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[1093] FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE
[1105] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
[1117] TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE
[1129] FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
[1141] FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE
[1153] FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
[1165] TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE
[1177] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
[1189] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[1201] FALSE FALSE FALSE FALSE FALSE
[1] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[13] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[37] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE
[49] FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
[73] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[85] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[97] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[121] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[133] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[145] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[157] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
[169] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[181] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
[193] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[217] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[229] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[265] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[277] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[289] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[313] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[325] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
[337] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[349] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[361] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
[385] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
[397] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[421] FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[433] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[469] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[481] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[493] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[505] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[517] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[529] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[541] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[553] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[565] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[601] TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[625] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[637] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[649] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[661] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[673] FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
[685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
[709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[721] TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[733] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[745] FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[757] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[781] TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE
[793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[805] FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[817] TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[829] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
[841] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[853] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
[865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
[877] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[889] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[901] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[913] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[925] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[949] FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
[961] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[973] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
[997] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[1009] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE
[1045] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1057] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
[1069] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
[1081] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[1093] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[1105] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
[1117] TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
[1129] FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
[1141] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[1153] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[1165] FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
[1177] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
[1189] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1201] FALSE FALSE FALSE FALSE FALSE
To get the extreme values of eyesight (1 and 5), we would do something like:
# A tibble: 2 × 2
eyesight n
<dbl> <int>
1 1 474
2 5 19
We could of course do the same thing with a factor variable:
Often we have a number of options for one variable that would meet our eligibility criteria. R’s special %in%
function comes in handy here:
If the variable’s value is any one of those values, it will return TRUE
.
Note
This is the same as saying region_cat == "South" | region_cat == "West" | region_cat == "Northeast"
%in%
This is just a regular R function that works outside of the filter()
function, of course!
This is just the same as writing:
%in%
We can’t say “not in” with the syntax %!in%
or something like that. We have to put the !
before the question to make it the opposite of what it otherwise would be
R offers a number of shortcuts to use when determining whether values meet certain criteria:
is.na()
: is it a missing value?is.finite()
/ is.infinite()
: when you might have infinite values in your datais.factor()
: asks whether some variable is a factorYou can find lots of these if you tab-complete is.
or is_
(the latter are tidyverse versions). Most you will never find a use for!
We can of course filter()
on multiple variables at once:
my_data <- filter(nlsy,
age_bir < 20,
sex != 1,
nsibs %in% c(1, 2, 3),
!is.na(sleep_wkdy))
summary(select(my_data, age_bir, sex, nsibs, sleep_wkdy))
age_bir sex nsibs sleep_wkdy
Min. :14.00 Min. :2 Min. :1.000 Min. : 2.000
1st Qu.:17.00 1st Qu.:2 1st Qu.:1.750 1st Qu.: 6.000
Median :18.00 Median :2 Median :2.000 Median : 7.000
Mean :17.42 Mean :2 Mean :2.163 Mean : 6.452
3rd Qu.:19.00 3rd Qu.:2 3rd Qu.:3.000 3rd Qu.: 7.000
Max. :19.00 Max. :2 Max. :3.000 Max. :10.000
Spot the difference?
oth_dat <- filter(nlsy,
(age_bir < 20) &
(sex != 1 | nsibs %in% c(1, 2, 3)) &
!is.na(sleep_wkdy))
summary(select(oth_dat, age_bir, sex, nsibs, sleep_wkdy))
age_bir sex nsibs sleep_wkdy
Min. :13.00 Min. :1.000 Min. : 0.000 Min. : 0.000
1st Qu.:16.00 1st Qu.:2.000 1st Qu.: 2.000 1st Qu.: 6.000
Median :17.00 Median :2.000 Median : 4.000 Median : 7.000
Mean :17.24 Mean :1.929 Mean : 4.539 Mean : 6.687
3rd Qu.:18.00 3rd Qu.:2.000 3rd Qu.: 6.000 3rd Qu.: 8.000
Max. :19.00 Max. :2.000 Max. :16.000 Max. :13.000
What does this sequence of code do?
nlsy2 <- mutate(nlsy,
only = case_when(
nsibs == 0 ~ "yes",
.default = "no"))
nlsy3 <- select(nlsy2, id, contains("sleep"), only)
only_kids <- filter(nlsy3, only == "yes")
only_kids
# A tibble: 30 × 4
id sleep_wkdy sleep_wknd only
<dbl> <dbl> <dbl> <chr>
1 458 7 8 yes
2 653 6 7 yes
3 1101 7 8 yes
4 1166 5 6 yes
5 2163 7 8 yes
6 2442 7 9 yes
7 2545 8 8 yes
8 3036 5 8 yes
9 3194 7 7 yes
10 3538 5 5 yes
# ℹ 20 more rows
What does this sequence of code do?
nlsy2 <- filter(nlsy, age_bir < 20)
nlsy3 <- select(nlsy2, id, contains("cat"), age_bir)
nlsy_final <- mutate(nlsy3,
age_bir_decade = case_when(
age_bir < 20 ~ "<20",
age_bir < 30 ~ "20-29",
age_bir < 40 ~ "30-39",
age_bir < 50 ~ "40-49",
age_bir >= 50 ~ "50+"
),
age_bir_decade = fct_relevel(age_bir_decade,
"<20", "20-29", "30-39", "40-49", "50+")
)
In any data management and/or analysis task, we perform a series of functions to the data until we get some object we want.
Sometimes this can be hard to read/keep track of.
If you have experience with unix programming, you may be familiar with the version of the pipe there: |
.
Starting with R version 4.1, R has its own pipe: |>
The original pipe function in R %>%
has been part of the tidyverse for a while and is originally from the magrittr
package, named after René Magritte
It’s like a recipe for our dataset.1
or all-in-one
nlsy2 <- mutate(nlsy, only = case_when(
nsibs == 0 ~ "yes",
.default = "no"))
nlsy3 <- select(nlsy2,
id, contains("sleep"), only)
only_kids <- filter(nlsy3, only == "yes")
only_kids
# A tibble: 30 × 4
id sleep_wkdy sleep_wknd only
<dbl> <dbl> <dbl> <chr>
1 458 7 8 yes
2 653 6 7 yes
3 1101 7 8 yes
4 1166 5 6 yes
5 2163 7 8 yes
6 2442 7 9 yes
7 2545 8 8 yes
8 3036 5 8 yes
9 3194 7 7 yes
10 3538 5 5 yes
# ℹ 20 more rows
only_kids <- nlsy |>
mutate(only = case_when(
nsibs == 0 ~ "yes",
TRUE ~ "no")) |>
select(id, contains("sleep"), only) |>
filter(only == "yes")
only_kids
# A tibble: 30 × 4
id sleep_wkdy sleep_wknd only
<dbl> <dbl> <dbl> <chr>
1 458 7 8 yes
2 653 6 7 yes
3 1101 7 8 yes
4 1166 5 6 yes
5 2163 7 8 yes
6 2442 7 9 yes
7 2545 8 8 yes
8 3036 5 8 yes
9 3194 7 7 yes
10 3538 5 5 yes
# ℹ 20 more rows
mutate(.data, ...)
select(.data, ...)
filter(.data, ...)
select()
lets you choose the variables you wantfilter()
lets you choose the rows you wantmutate()
lets you create new variables|>
or %>%
) lets you chain these functions togetherstarts_with()
, ends_with()
, contains()
, matches()
, num_range()
, all_of()
, any_of()
, everything()
, where()
: helpers for select()
is.na()
, is.finite()
, is.infinite()
, is.factor()
: helpers for filter()
%in%
: for multiple ==
or !=
possibilities