
Welcome to ID 543
Introduction to R

1 / 73

About this class
Quick! Intense!

Daily homeworks & final project

Use office hours! Your classmates! The internet!

It will require practice afterward, and time to sink in

The goal is to set you up for success and give you
resources to learn more

Experiment! You are not going to break anything!

Tip

2 / 73

About this class
Everything you need is at

Canvas will link you there, but good to bookmark as well

Everything admin/grade-related on Canvas

General format:

Some overview slides

An example together

Practice on your own/with your classmates

Repeat

Try to solve a problem yourself first, classmate second, teaching team third

http://id543.louisahsmith.com

Tip

3 / 73

http://id543.louisahsmith.com/

Homeworks
Did you make a good-faith effort to answer the question using the tools we’ve
covered in class?

Read the error message carefully. Check for missing/extra commas and
parentheses. Restart R and reload the data.

Go back to the slides. What were the day’s goals? What were the functions we
covered?

Check out the reading – it can be good to get another perspective.

Google using key words from the class. There are lots of ways to do things, but try
to find strategies using tools we’ve covered in class (e.g., if you search with
“tidyverse” you’ll find a lot of what we cover).

Ask a classmate how they approached it. Don’t copy and paste – even if you end
up writing exactly what they did, type it out yourself for practice.

If you can’t solve a problem, include code you tried and describe the strategies
you used to try to solve it.

4 / 73

About this class
Day 1: dataframes and variables

Day 2: data manipulation and management

Day 3: models and tables

Day 4: figures and more

5 / 73

About Louisa
Assistant professor at
Northeastern University

Department of Public
Health & Health Sciences
and the Roux Institute
(Portland)

Started using R during my
master’s (so almost 10 years of
experience)

Learned mostly by doing!

Twitter, blogs, RStudio::conf,
meetups

First iteration of this class
when I was a PhD student here

Basically everything I do is in R!

6 / 73

About Xiyue
Education

Bachelor’s Degree in Nutrition, University of
Washington, Seattle

Current MS Student in Epidemiology, Harvard
University

Previous Experience
Research Assistant/Student Researcher at Duke
Kunshan University, Tsinghua University, and
Peking University

Used STATA and R for research

Research Interests
Diet and NAFLD, Liver Cancer in older adults

7 / 73

Today’s goals
Familiarize yourselves with RStudio

Introduce you to the tidyverse and the concept of
packages

Explore data stored in dataframes

Create new variables

Learn about factor variables and how to manipulate
them

8 / 73

RStudio

9 / 73

Start fresh
If you have used R previously, an old workspace may still be active when you
open RStudio

You always want to start with a fresh session

Go to Tools -> Global Options, and under General, change these settings:

Now, you can just quit and restart RStudio if something goes wrong! You can
also go to Session -> Restart R to clear your session.

Tip

10 / 73

Rainbow parentheses
Always confirm you are closing your parentheses!

Tools -> Global Options -> Code -> Display -> Rainbow
Parentheses

https://posit.co/blog/rstudio-1-4-preview-rainbow-parentheses/
11 / 73

https://posit.co/blog/rstudio-1-4-preview-rainbow-parentheses/

Print output to console
You can run…

code that you type directly in the console

code you won’t need to run again

code in an .R script

code in a .qmd (Quarto) or .Rmd (R Markdown) file

code you want to render to an html, word, or pdf file

I like to have all code print to the console for consistency:

12 / 73

Packages
Some functions are built into R

mean(), lm(), table(), etc.

They actually come from built-in packages

base, stats, graphics, etc.

Anyone (yes, anyone) build their own package to add to the functionality of R

{ggplot2}, {dplyr}, {data.table}, {survival}, etc.

1

1. Image from Zhi Yang

13 / 73

https://zhiyang.netlify.app/post/hexwall/

Packages
You have to install a package once1

You then have to load the package every time you want
to use it

install.packages("survival")1

library(survival)1

1. Actually, with every new major R release, but we won’t worry about that.

14 / 73

Packages
“You only have to buy the book once, but you have to go
get it out of the bookshelf every time you want to read it.”

Several days later…

install.packages("survival")1
library(survival)2
survfit(...)3

library(survival)1
coxph(...)2

15 / 73

Package details
When you use install.packages, packages are downloaded from (The
Comprehensive R Archive Network)

This is also where you downloaded R

Packages can be hosted lots of other places, such as (for
bioinformatics), and (for personal projects or while still developing)

The folks at CRAN check to make things “work” in some sense, but don’t check
on the statistical methods…

But because R is open-source, you can always read the code yourself

Two functions from different packages can have the same name… if you load
them both, you may have some trouble

CRAN

Bioconductor
Github

16 / 73

https://cran.r-project.org/
https://www.bioconductor.org/
https://www.github.com/

Demo
Script vs. console, installing packages, and changing

settings

17 / 73

The biggest difference between R and
Stata is that R can have many different
objects in its environment

datasets, numbers, figures, etc.

you have to be explicit about storing and retrieving
objects

e.g., what dataset a variable belongs to

18 / 73

R uses <- to store objects in the
environment
I call this the “assignment arrow”

Now vals holds those values

No assignment arrow means that the object will be printed to the console (and
lost forever!)

create values1
vals <- c(1, 645, 329)2

Warning

19 / 73

Objects
We can retrieve those values by running just the name of
the object

We can also perform operations on them using functions
like mean()

If we want to keep the result of that operation, we need to
use <- again

vals1

[1] 1 645 329

mean(vals)1

[1] 325

mean_val <- mean(vals)1
20 / 73

Types of data (classes)
We could also create a character vector:

Or a logical vector:

We’ll see more options as we go along!

chars <- c("dog", "cat", "rhino")1
chars2

[1] "dog" "cat" "rhino"

logs <- c(TRUE, FALSE, FALSE)1
logs2

[1] TRUE FALSE FALSE

Note

21 / 73

Types of objects
We created vectors with the c() function (c stands for
concatenate)

We could also create a matrix of values with the matrix()
function:

turn the vector of numbers into a 2-row matrix1
mat <- matrix(c(234, 7456, 12, 654, 183, 753), nrow = 2)2
mat3

 [,1] [,2] [,3]
[1,] 234 12 183
[2,] 7456 654 753

22 / 73

Indices
The numbers in square brackets are indices, which we can
use to pull out values:

We can pull out rows or columns from matrices:

extract second animal1
chars[2]2

[1] "cat"

extract second row1
mat[2,]2

[1] 7456 654 753

extract first column1
mat[, 1]2

[1] 234 7456
23 / 73

Exercise
Pre-class challenges

24 / 73

Dataframes
We usually do analysis in R with dataframes (or some
variant)

Dataframes basically work like spreadsheets: here,
columns are variables, and rows are observations

Here’s some data from the National Longitudinal Survey
of Youth:
nlsy1

A tibble: 1,205 × 15
 id glasses eyesight sleep_wkdy sleep_wknd nsibs race_eth sex region
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 3 0 1 5 7 3 3 2 1
 2 6 1 2 6 7 1 3 1 1
 3 8 0 2 7 9 7 3 2 1
 4 16 1 3 6 7 3 3 2 1
 5 18 0 3 10 10 2 3 1 3
 6 20 1 2 7 8 2 3 2 1
 7 27 0 1 8 8 1 3 2 1
8 49 1 1 8 8 6 3 2 1

25 / 73

New function: glimpse()
We can get a quick overview of the data with the glimpse() function:

Notice that I write a function name followed by parentheses to signal it is a function, and can take arguments within
the parentheses

glimpse(nlsy)1

Rows: 1,205
Columns: 15
$ id <dbl> 3, 6, 8, 16, 18, 20, 27, 49, 57, 67, 86, 96, 97, 98, 117,…
$ glasses <dbl> 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, …
$ eyesight <dbl> 1, 2, 2, 3, 3, 2, 1, 1, 2, 1, 3, 5, 1, 1, 1, 1, 3, 2, 3, …
$ sleep_wkdy <dbl> 5, 6, 7, 6, 10, 7, 8, 8, 7, 8, 8, 7, 7, 7, 8, 7, 7, 8, 8,…
$ sleep_wknd <dbl> 7, 7, 9, 7, 10, 8, 8, 8, 8, 8, 8, 7, 8, 7, 8, 7, 4, 8, 8,…
$ nsibs <dbl> 3, 1, 7, 3, 2, 2, 1, 6, 1, 1, 7, 2, 7, 2, 2, 4, 9, 2, 2, …
$ race_eth <dbl> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, …
$ sex <dbl> 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, …
$ region <dbl> 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
$ income <dbl> 22390, 35000, 7227, 48000, 4510, 50000, 20000, 23900, 232…
$ age_bir <dbl> 19, 30, 17, 31, 19, 30, 27, 24, 21, 36, 17, 19, 29, 30, 2…
$ eyesight_cat <fct> Excellent, Very Good, Very Good, Good, Good, Very Good, E…
$ glasses_cat <fct> Doesn't wear glasses, Wears glasses/contacts, Doesn't wea…
$ race_eth_cat <fct> "Non-Black, Non-Hispanic", "Non-Black, Non-Hispanic", "No…
$ sex_cat <fct> Female, Male, Female, Female, Male, Female, Female, Femal…

Note

26 / 73

New function: summary()
We can also get a summary of the data with the summary() function:

summary(nlsy)1

 id glasses eyesight sleep_wkdy
 Min. : 3 Min. :0.0000 Min. :1.00 Min. : 0.000
 1st Qu.: 2317 1st Qu.:0.0000 1st Qu.:1.00 1st Qu.: 6.000
 Median : 4744 Median :1.0000 Median :2.00 Median : 7.000
 Mean : 5229 Mean :0.5178 Mean :1.99 Mean : 6.643
 3rd Qu.: 7937 3rd Qu.:1.0000 3rd Qu.:3.00 3rd Qu.: 8.000
 Max. :12667 Max. :1.0000 Max. :5.00 Max. :13.000
 sleep_wknd nsibs race_eth sex
 Min. : 0.000 Min. : 0.000 Min. :1.000 Min. :1.000
 1st Qu.: 6.000 1st Qu.: 2.000 1st Qu.:2.000 1st Qu.:1.000
 Median : 7.000 Median : 3.000 Median :3.000 Median :2.000
 Mean : 7.267 Mean : 3.937 Mean :2.395 Mean :1.584
 3rd Qu.: 8.000 3rd Qu.: 5.000 3rd Qu.:3.000 3rd Qu.:2.000
 Max. :14.000 Max. :16.000 Max. :3.000 Max. :2.000
 region income age_bir eyesight_cat
 Min. :1.000 Min. : 0 Min. :13.00 Excellent:474
 1st Qu.:2.000 1st Qu.: 6000 1st Qu.:19.00 Very Good:385
 Median :3.000 Median :11155 Median :22.00 Good :249
 Mean :2.593 Mean :15289 Mean :23.45 Fair : 78
 3rd Qu.:3.000 3rd Qu.:20000 3rd Qu.:27.00 Poor : 19
 Max. :4.000 Max. :75001 Max. :52.00
 glasses_cat race_eth_cat sex_cat
 Doesn't wear glasses :581 Hispanic :211 Male :501
 Wears glasses/contacts:624 Black :307 Female:704
 Non-Black, Non-Hispanic:687

27 / 73

Indices in dataframes
We can pull out data from dataframes using the “square
bracket notation” we already saw:

nlsy[3,]1

A tibble: 1 × 15
 id glasses eyesight sleep_wkdy sleep_wknd nsibs race_eth sex region
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 8 0 2 7 9 7 3 2 1
ℹ 6 more variables: income <dbl>, age_bir <dbl>, eyesight_cat <fct>,
glasses_cat <fct>, race_eth_cat <fct>, sex_cat <fct>

nlsy[, 3]1

A tibble: 1,205 × 1
 eyesight
 <dbl>
 1 1
 2 2
 3 2
 4 3
 5 3
 6 2
 7 1

28 / 73

Dollar sign notation
It’s much more useful to be able to pull out a variable by
its name, though:

nlsy$sex_cat1

 [1] Female Male Female Female Male Female Female Female Female Male
 [11] Female Female Female Female Male Female Female Female Female Female
 [21] Female Male Female Female Female Male Female Male Female Female
 [31] Male Male Male Female Female Male Female Female Male Female
 [41] Female Male Female Male Female Male Male Female Male Male
 [51] Male Female Female Female Male Female Male Female Male Male
 [61] Male Female Male Female Female Male Male Female Female Male
 [71] Female Male Male Male Female Male Male Male Male Female
 [81] Female Female Female Female Female Female Male Female Male Female
 [91] Male Female Female Female Female Female Female Female Male Female
[101] Female Female Female Female Male Male Female Male Male Female
[111] Female Male Male Male Male Female Male Male Male Male
[121] Female Female Male Female Female Female Female Female Male Male
[131] Female Female Male Female Female Female Female Female Male Female
[141] Male Male Female Female Male Male Female Female Female Female
[151] Female Female Female Female Male Female Female Male Male Male
[161] Female Male Female Female Male Female Female Female Female Male
[171] Male Female Female Male Female Female Female Female Female Female
[181] Female Male Male Female Male Female Male Female Female Female
[191] Male Female Female Female Female Male Female Male Male Male

29 / 73

Summarize a single variable
We can also get a summary of a single variable:

summary(nlsy$sex_cat)1

 Male Female
 501 704

summary(nlsy$income)1

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0 6000 11155 15289 20000 75001

30 / 73

Variables
Variables can be different types, including numeric,
character, logical, and factor.

You can check what type of variable you’re dealing with:
class(nlsy$sex_cat) (factor!)

A special type of dataframe called a “tibble” will show
you at the top:
nlsy1

A tibble: 1,205 × 15
 id glasses eyesight sleep_wkdy sleep_wknd nsibs race_eth sex region
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 3 0 1 5 7 3 3 2 1
 2 6 1 2 6 7 1 3 1 1
 3 8 0 2 7 9 7 3 2 1
 4 16 1 3 6 7 3 3 2 1
 5 18 0 3 10 10 2 3 1 3
 6 20 1 2 7 8 2 3 2 1
 7 27 0 1 8 8 1 3 2 1
8 49 1 1 8 8 6 3 2 1

31 / 73

32 / 73

tibbles are basically just pretty dataframes
as_tibble(nlsy)[, 1:4]1

A tibble: 1,205 × 4
 id glasses eyesight sleep_wkdy
 <dbl> <dbl> <dbl> <dbl>
 1 3 0 1 5
 2 6 1 2 6
 3 8 0 2 7
 4 16 1 3 6
 5 18 0 3 10
 6 20 1 2 7
 7 27 0 1 8
 8 49 1 1 8
 9 57 1 2 7
10 67 0 1 8
ℹ 1,195 more rows

as.data.frame(nlsy)[, 1:4]1

 id glasses eyesight sleep_wkdy
1 3 0 1 5
2 6 1 2 6
3 8 0 2 7
4 16 1 3 6
5 18 0 3 10
6 20 1 2 7
7 27 0 1 8
8 49 1 1 8
9 57 1 2 7
10 67 0 1 8
11 86 0 3 8
12 96 1 5 7
13 97 1 1 7
14 98 0 1 7
15 117 0 1 8
16 137 0 1 7
17 172 0 3 7
18 179 1 2 8
19 186 1 3 8
20 200 1 3 8
21 205 0 4 7
22 218 1 2 6
23 227 0 2 8
24 237 0 5 7

33 / 73

Different ways to do the same thing
There are usually multiple ways to achieve a task in R.
Ideally we’d like solutions that are:

readable: If you share your code with someone, can they
figure out what you’re doing?

reliable: Is this way always going to work, even if the
data is slightly different?

safe: Is this way going to introduce errors into your code
without you noticing?

fast: Is this an efficient way to do things, given all of the
above?

We’ll focus on the tidyverse because I think it’s the
optimal mix of those characteristics 34 / 73

tidyverse
The same people who make RStudio also are responsible
for a set of packages called the tidyverse

35 / 73

tidyverse
install.packages("tidyverse") actually
downloads more than a dozen packages1

library(tidyverse) loads:
ggplot2, dplyr, tidyr, readr, purrr, tibble, stringr, forcats,

lubridate

This is by no means the only way to
manage your data, but I find that a lot of
the time, it’s the easiest and simplest way
to get things done.

1. See which ones at https://tidyverse.tidyverse.org

36 / 73

https://tidyverse.tidyverse.org/

Exercise
Intro to dataframes

37 / 73

Creating variables
Two (of several) ways to take the (natural) log of income
and store it in the dataframe:

OR

The second way may look longer now, but we’ll see later why it’s useful when we
make lots of variables at once!

nlsy$log_income <- log(nlsy$income)1

nlsy <- mutate(nlsy, 1
 log_income = log(income))2

Note

38 / 73

New function: Creating a new variable with
mutate()
General format:

We can do whatever we want to a variable to make a new one:

mutate() is a function that acts on a dataframe, so when we use the assignment arrow, it’s to store the dataframe
with the new variable back in the same place

dataframe <- mutate(dataframe,1
 new_variable = function(old_variable))2

nlsy <- mutate(nlsy,1
 new_id = id + 1)2

Tip

39 / 73

Making variables in “Base R”
nlsy$region_cat <- factor(nlsy$region)1
nlsy$income <- round(nlsy$income)2
nlsy$age_bir_cent <- nlsy$age_bir - mean(nlsy$age_bir)3
nlsy$index <- 1:nrow(nlsy)4
nlsy$slp_wkdy_cat <- ifelse(nlsy$sleep_wkdy < 5, "little",5
 ifelse(nlsy$sleep_wkdy < 7, "some",6
 ifelse(nlsy$sleep_wkdy < 9, "id7
 ifelse(nlsy$sleep_wkdy <8
)9
)10
)11

40 / 73

Very quickly your code can get overrun
with dollar signs (and parentheses, and
arrows)

41 / 73

Cleaner way to make lots of new variables

We can refer to variables within the same dataset (region, income, age_bir)
without the $ notation

nlsy <- mutate(nlsy, # dataset1
 # new variables2
 region_cat = factor(region, labels = c("Northeast", "North Cen3
 income = round(income),4
 age_bir_cent = age_bir - mean(age_bir),5
 index = row_number() # a special function that gives the row n6
 # could make as many as we want....7
)8

Tip

42 / 73

mutate() tips and tricks
You still need to store your dataset somewhere, so make sure to include the
assignment arrow

Good practice to make new copies with different names as you go along

nlsy_w_cats <- mutate(nlsy, # dataset1
 region_cat = factor(region),2
 sex_cat = factor(sex),3
 race_eth_cat = factor(race_eth))4

5
nlsy_clean <- mutate(nlsy_w_cats, # dataset6
 region_cat = fct_recode(region_cat,7
 "Northeast" = "1",8
 "North Central" = "2",9
 "South" = "3",10
 "West" = "4"),11
 sex_cat = fct_relevel(sex_cat,12
 "Female", "Male"))13

43 / 73

mutate() tips and tricks
You can refer immediately to variables you just made:

“Chunk” your work on the same/similar variables so you can keep track of how a
variable is derived.

nlsy_new <- mutate(nlsy,1
 age_bir_cent = age_bir - mean(age_bir),2
 age_bir_stand = age_bir_cent / sd(age_bir_cent)3
)4

Tip

44 / 73

Exercise
Making variables

45 / 73

Factor variables
When I downloaded the data originally, it was all numeric
(“double”)

I already converted some variables into categorical
(“factor”) variables (using the codebook)

factors have levels

the first level is the reference level when you include it
in a regression

46 / 73

New function: count()
We can explore factor variables (and other types!) using
count():

Like mutate(), this function takes a dataframe as its first argument. The second
argument is the variable you want to count.

count(nlsy, glasses_cat)1

A tibble: 2 × 2
 glasses_cat n
 <fct> <int>
1 Doesn't wear glasses 581
2 Wears glasses/contacts 624

Tip

47 / 73

Cross-tabulations
Actually, count() can take a whole series of variable
names:

If this isn’t in the format you want your cross-tab in, don’t worry – we’ll see other
funtions that make better tables later. This output is handy though, because it’s
a dataframe! (Actually, a tibble!)

count(nlsy, glasses_cat, sex_cat)1

A tibble: 4 × 3
 glasses_cat sex_cat n
 <fct> <fct> <int>
1 Doesn't wear glasses Male 280
2 Doesn't wear glasses Female 301
3 Wears glasses/contacts Male 221
4 Wears glasses/contacts Female 403

Note

48 / 73

New function: converting a variable with
factor()
Again, two ways of doing the same thing:

OR

nlsy$region_cat <- factor(nlsy$region)1

nlsy <- mutate(nlsy, 1
 region_cat = factor(region))2

49 / 73

The factor() function does nothing to the
names of the values

The levels will be in numeric order, or alphabetical order if a character variable.
This means that factor(c(1, 2, ..., 10)) will have a different ordering than
factor(c("1", "2", ..., "10")).

nlsy <- mutate(nlsy, 1
 region_cat = factor(region))2
class(nlsy$region_cat)3

[1] "factor"

levels(nlsy$region_cat)1

[1] "1" "2" "3" "4"

Warning

50 / 73

We can assign names to the values

Make sure the order of the levels = and labels = arguments always match!

nlsy <- mutate(nlsy, 1
 region_cat = factor(region, 2
 levels = c(1, 2, 3, 4),3
 labels = c("Northeast", 4
 "North Central", "South", 5
 "West")))6

Warning

51 / 73

It’s always good practice to confirm
everything looks right

count(nlsy, region_cat, region)1

A tibble: 4 × 3
 region_cat region n
 <fct> <dbl> <int>
1 Northeast 1 206
2 North Central 2 333
3 South 3 411
4 West 4 255

52 / 73

Exercise
Intro to factors

53 / 72

My favorite R function: case_when()
I used to write endless strings of ifelse() statements

If A is TRUE, then B; if not, then if C is true, then D; if not,
then if E is true, then F; if not, …

This can be extremely hard to follow!

nlsy <- mutate(nlsy,1
 ifelse(sleep_wkdy < 5, "little", 2
 ifelse(sleep_wkdy < 7, "some", 3
 ifelse(sleep_wkdy < 9, "ideal", 4
 ifelse(sleep_wkdy < 12, "lots"5

54 / 72

case_when() syntax
Ask a question (i.e., something that will give TRUE or
FALSE) on the left-hand side of a ~

sleep_wkdy < 5 ~

If TRUE, variable will take on value of whatever is on the
right-hand side of the ~

~ "little"

Proceeds in order … if TRUE, takes that value and stops

If you want some default value, you can end with
.default = {something}, which every observation will
get if everything else is FALSE

.default = NA is the default default
55 / 72

Logicals: answers to TRUE/FALSE
questions
When we want to know if something is

equal: ==

not equal: !=

greater than or equal to: >=

less than or equal to: <=

We also can ask about multiple conditions with & (and)
and | (or).

56 / 72

case_when() combines a lot of “if-else”
statements

nlsy <- mutate(nlsy, slp_cat_wkdy = 1
 case_when(sleep_wkdy < 5 ~ "little",2
 sleep_wkdy < 7 ~ "some",3
 sleep_wkdy < 9 ~ "ideal",4
 sleep_wkdy < 12 ~ "lots",5
 .default = NA6
)7
)8

9
count(nlsy, sleep_wkdy, slp_cat_wkdy)10

A tibble: 13 × 3
 sleep_wkdy slp_cat_wkdy n
 <dbl> <chr> <int>
 1 0 little 1
 2 2 little 4
 3 3 little 14
 4 4 little 48

36

57 / 72

case_when() example

Which value would someone with sleep_wknd = 8 and
sleep_wkdy = 4 go?

What about someone with sleep_wknd = 11 and
sleep_wkdy = 4?

What about someone with sleep_wknd = 7 and
sleep_wkdy = 7?

nlsy <- mutate(nlsy, total_sleep = 1
 case_when(2
 sleep_wknd > 8 & sleep_wkdy > 8 ~ 1,3
 sleep_wknd + sleep_wkdy > 15 ~ 2,4
 sleep_wknd - sleep_wkdy > 3 ~ 35
)6
)7

58 / 72

Creating a factor variable from a character
variable after using case_when()

What order will these levels be in?

nlsy <- mutate(nlsy, slp_chr_wkdy = 1
 case_when(2
 sleep_wkdy < 5 ~ "little",3
 sleep_wkdy < 7 ~ "some",4
 sleep_wkdy < 9 ~ "ideal",5
 sleep_wkdy < 12 ~ "lots"6
),7
 slp_cat_wkdy = factor(slp_chr_wkdy)8
)9

59 / 72

Side note: another way to look at factors
In the next few slides, I’ll use the summary() function
(rather than count()) to look at factors

It’s easier to fit the output on slides

However, it doesn’t show anything interesting for
character variables so I usually prefer count(), which
does
summary(nlsy$slp_chr_wkdy)1

 Length Class Mode
 1205 character character

summary(nlsy$slp_cat_wkdy)1

 ideal little lots some NA's
 626 67 47 462 3

60 / 72

forcats package
Tries to make working with factors
safe and convenient

Functions to make new levels, reorder
levels, combine levels, etc.

All the functions start with fct_ so
they’re easy to find using tab-
complete!

Automatically loads with
library(tidyverse)

61 / 72

Reorder factors
The fct_relevel() function allows us just to rewrite the
names of the categories out in the order we want them
(safely).

nlsy <- mutate(nlsy, 1
 slp_cat_wkdy_ord = fct_relevel(slp_cat_wkdy, 2
 "little", 3
 "some", 4
 "ideal", 5
 "lots"6
)7
)8

9
summary(nlsy$slp_cat_wkdy_ord)10

little some ideal lots NA's
 67 462 626 47 3

62 / 72

What if you misspell something?

You get a warning, and levels you didn’t mention are pushed to the
end.

nlsy <- mutate(nlsy, 1
 slp_cat_wkdy_ord2 = fct_relevel(slp_cat_wkdy, 2
 "little", 3
 "soome", 4
 "ideal", 5
 "lots"))6

Warning: There was 1 warning in `mutate()`.
ℹ In argument: `slp_cat_wkdy_ord2 = fct_relevel(slp_cat_wkdy, "little",
 "soome", "ideal", "lots")`.
Caused by warning:
! 1 unknown level in `f`: soome

summary(nlsy$slp_cat_wkdy_ord2)1

little ideal lots some NA's
 67 626 47 462 3

63 / 72

Recode a factor
nlsy <- mutate(nlsy, 1
 region_cat2 = fct_recode(region_cat,2
 "NE" = "Northeast",3
 "NC" = "North Central",4
 "S" = "South",5
 "W" = "West"))6
summary(nlsy$region_cat2)7

 NE NC S W
206 333 411 255

64 / 72

Other orders
How about from most people to least?

Or the reverse of that?

This will be handy when running regressions and creating graphs.

nlsy <- mutate(nlsy, region_cat = fct_infreq(region_cat))1
summary(nlsy$region_cat)2

 South North Central West Northeast
 411 333 255 206

nlsy <- mutate(nlsy, region_cat = fct_rev(region_cat))1
summary(nlsy$region_cat)2

 Northeast West North Central South
 206 255 333 411

Tip

65 / 72

Add levels
We have some missing values – let’s say we want to
include them as a group in a table, figure, or regression.

nlsy <- mutate(nlsy, slp_cat_wkdy_out = 1
 fct_na_value_to_level(slp_cat_wkdy, level = "outl2
summary(nlsy$slp_cat_wkdy_out)3

 ideal little lots some outlier
 626 67 47 462 3

66 / 72

Remove levels
Or maybe we want to combine some levels that don’t
have a lot of observations in them:

nlsy <- mutate(nlsy, slp_cat_wkdy_comb = 1
 fct_collapse(slp_cat_wkdy, 2
 "less" = c("little", "some"),3
 "more" = c("ideal", "lots")4
)5
)6
summary(nlsy$slp_cat_wkdy_comb)7

more less NA's
 673 529 3

67 / 72

Add and remove
Or we can have R choose which ones to combine based
on how few observations they have:

Probably not a good idea for factors with an inherent
order

nlsy <- mutate(nlsy, slp_cat_wkdy_lump = 1
 fct_lump(slp_cat_wkdy, n = 2))2
summary(nlsy$slp_cat_wkdy_lump)3

ideal some Other NA's
 626 462 114 3

68 / 72

There are 25 fct_ functions in the package. The sky’s
the limit when it comes to manipulating your

categorical variables in R!
I never remember all of them – the goal is not for you to
either, but for you to be able to find what you need!

69 / 72

Exercise
Factor functions

71 / 72

Today’s summary
We learned about the tidyverse and how to install and
load packages

We learned about the tibble and how to create new
variables in a dataframe

We learned about factor variables and how to
manipulate them

72 / 72

Today’s functions
install.packages("package"): install a package (once)

library(package): load a package (every time you want to use it)

c(value, value, value): concatenate values into a vector

mean(vector); sd(vector): calculate the mean and standard deviation of a vector

glimpse(dataframe): get a quick overview of a dataframe

summary(dataframe); summary(dataframe$variable): get a summary of a dataframe
or single variable

mutate(dataframe, new_variable = function(old_variable)): create a new
variable

factor(variable, labels = , levels =): convert a variable to a factor

case_when(variable < value ~ "label", variable == value ~ "label"): create a
new variable based on a series of conditions

fct_relevel(), fct_recode(), fct_infreq(), fct_rev(), fct_na_value_to_level(),
fct_collapse(), fct_lump(), etc.: functions to manipulate factors (don’t worry
about memorizing, look up when you need to!)

73 / 72

